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GENERAL INTRODUCTION 

In this work, various theoretical electronic structure techniques are used to 

analyze widely different systems from siUcon clusters to transition metal solids and 

surfaces. All the theoretical techniques are in some fashion related to density 

functional theory (DFT). 

For the silicon clusters, first principles self-consistent DFT methods are used 

to investigate 8i^ for N=2-8. The goal is to understand the different types of bonding 

that can occur in geometries where the coordination of the atoms differs substantially 

from that of the stable bulk tetrahedral bonding. The analysis of the bonding reveals 

two limiting classes of silicon clusters. One of these is characterized by a large 

number of weak bonds, while the other has a small number of strong bonds. Such 

uncoordinated structures can provide a good test of more approximate theories that 

can eventually be used to model silicon surfaces. 

For the transition metal systems, non-self-consistent electronic structure 

methods with DFT components are used to provide an understanding of the driving 

force for surface relaxations. An in-depth analysis of the results is presented and the 

physical basis of surface relaxation within the theory is discussed. In addition, the 

limitations inherent in calculations of metal surface relaxation and in the semi-

empirical method itself are addressed. 

Finally, in an effort to increase understanding of approximate electronic 

structure methods, a novel non-self-consistent method is developed that is about 1000 

times faster computationally than more sophisticated methods. This new method is 
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tested for a variety of systems including diatomics, mixed metal systems and 

surfaces. The strengths and weaknesses of the new theory are discussed in detail, 

leading to greater understanding of non-self-consistent density functional theories as 

a whole. 

An Explanation of the Dissertation Organization 

The main body of this dissertation consists of three papers, each of which 

covers a separate research topic. Two of these papers have been pubUshed in 

journals at this time; the third is suitable for publication. In papers 2 and 3,1 have 

performed the majority of the calculations, analysis of data and the writing of the 

document, and am thus first author. In paper 1, the calculations were divided evenly 

between myself and Dr. René Founder. The analysis of the data and the writing of 

the paper were divided such that Dr. Founder performed a majority of the work, 

although I had many contributions. Hence, he is first author on this document. It 

should be noted that paper 1 represents a sizeable body of work, and my 

contributions to it are significant. This justifies its presence in the dissertation. 

These papers are preceded by a Hterature review containing the necessary 

background information on DFT, the details of its applications in paper 1 and the 

derivation of the semi-empirical electronic structure method with DFT components 

used in papers 2 and 3. The papers are followed by a general summary. References 

cited in the general introduction and general summary follow the general summary. 

Literature Review 

This literature review presents the background information refened to but not 

provided in the papers. 
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Overview of Density Functional Theory 

DFT exploits the fact that ground states are often the quantity of interest in 

chemistry. The result of using the Variational Principle^ is that the ground state 

energy of an electronic system is uniquely defined by its electron density, although 

the exact functional^ dependence of the energy on density remains unknown. In 

DFT, the electronic density has replaced the electronic wavefunction as the 

important basic variable. 

Consider an N-electron system with M nuclei and ignore relativistic effects®. 

The total energy of the system is: 

Br«a - ^ <" 

The first term on the right hand side (RHS) is the total energy of the nuclear system, 

while the second term on the RHS is the total energy of the electronic system. The 

separation of purely electronic energy and purely nuclear energy is possible because 

of the Bom-Oppenheimer approximation. 

The nuclear interactions can be written as: 

M 7 7 

where and are the atomic number and position in space, respectively of 

nucleus a. This term is simple to calculate. 

The electronic energy is significantly more difficult to calculate. It can be 

broken into four terms: 
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The first of these is the kinetic energy of N noninteracting electrons with the same 

density as the actual set of interacting electrons: 

Ep = -jZ (4) 

where vj/j are one-electron orbital wavefunctions. The second term is the electron-

nucleus attraction: 

where "r is the position of the electron in space and n(^ is the electron density. The 

third term is the Coulomb interaction between two charge distributions: 

E™. = • (6> 

Finally, the fourth term, E^g, is the exchange-correlation energy of the interacting 

system of electrons. This includes the kinetic energy difference between the 

interacting and non-interacting systems. Of all the terms on the RHS of Eq. (3), this 

is the only energy whose exact functional form in unknown. 

The ground-state electron density is the density that satisfies^ ôEg|[n('r)]/Sn("r) 

subject to the constraint |n("i^d"r = N. This gives 
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("1^ + è = ®iW (7) 

where ej is the energy of the i'th non-interacting electron, is the one-electron 

orbital wavefunction seen in Eq. (4) and v^g is the functional derivative of the 

exchange-correlation energy: 

= » (8) 

The electron density is given by 

N 

û(r) = E (9) 
i=l 

Eqs. (7)-(9) are known as the Kohn-Sham equations'^ and are exact. Up until now, no 

approximations have been made. 

A well known and widely used approximation of is the Local Density 

Approximation (LDA). This assumes that the exchange-correlation energy for a 

nonuniform system can be evaluated by applying uniform-electron-gas results to 

infinitesimal portions of the nonuniform electron distribution and summing the 

individual contributions over all space. 

The spin-generaUzed version of LDA is the Local Spin Density Approximation 

(LSDA). In the LSDA, the basis variables are n''"('i^ and n'(l^ in addition to n("^. In 

the LSDA the E^g is approximated as follows: 
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. /nfflejn©,{]<ff (10) 

where 

( = n^OO - n'g) (11) 
n^(r) + n"(ï) 

is the exchange and correlation energy functional and includes the 

residual kinetic energy term per particle of an interacting homogeneous electron gas 

of density nCh. 6^g[n("^,%] can be divided into separate exchange and correlation 

contributions. 

The exchange energy within the LSDA has the following analytic form: 

= e^(n,0) + [c^(n,l)-e^(n,0)]f(C) (12) 

f(0 = |(2^^-l)-^[(l+0^ + (1-Cf^ - 2] (13) 

where, in the Dirac implementation®, 

ej(nOO) = (14) 

C, = |(-)'^ ,C=0 

(15) 

= 2^-i—y'^ ,c=i 
4 7t 

In contrast, the correlation energy is not know analytically and has been 

approximated different ways. The Gunnersson-Lundqvist (GL) correlation 

functional® used in papers 2 and 3 assumes that the correlation energy has the same 
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analytic form as the exchange energy. Eqs. (12) and (13) are used in this 

implementation, replacing the "x" with a "c" and Eqs. (14) and (15) with the following 

expression: 

e f ( r . , 0  -  - o C O K l * i ' ( 0 ) l a ( l 1 ,  ( 1 6 )  

Tg is the radius of a sphere whose volume is the effective volume of an electron at a 

specific electron density (i.e., n(r) = 1 electron/ (4%rg/3) ), x(%)= c(0)=0.0666, 

c(l)=0.0406, r(0)=11.4 and r(l)=15.9. 

Vosko, Wilk and Nusair (VWN)^ have developed another form for the 

correlation energy that is used in paper 1 for the LSDA calculations. 

er™(r.,0 = (17) 

a(rg) and P(rg) are the spin stiffness constant and a fitting parameter respectively, 

and are provided in tables. eg(rg) is given by the following expression: 

(18) 

X(x) Q 2x*b 

where x = Vrg, X(x) = x^+bx+c and Q=V(4c - b^). When ^=0, A=0.0621814, 

xo=-0.409286, b=13.0720 and c= 42.7198. When %=1, A=0.0310907, Xo=-0.743294, 

b=20.1231 and c=101.578. 

In non-local density applications, which are more accurate than LSDA 

calculations, the gradients of the electron density is evaluated along with the density 
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fimctionals. The gradient of the density is a measure of the inhomogeneity of the 

density of finite systems. Paper 1 includes non-local calculations which use the 

Perdew-Wang gradient-corrected exchange-correlation energy fimctionals®. The exact 

forms of these fimctionals are not reproduced here due to their complicated form. 

Details of Implementing Density Functional Theory 

The first principles, self-consistent computational method used in paper 1®'^® 

expands the one-electron molecular orbitals of Eqs. (4) and (7), xj/j, in a linear 

combination of gaussian type orbitals (LCGTO): 

tiOO = Ç CjiAjOO (19) 

Here {p} are the atom-centered gaussian-type orbitals, called the orbital basis, and 

{Cj} is the set of expansion coefiicients. 

The electron density n and exchange-correlation potentials, (where a= + 

or - spin) are also fit by LCGTO fimctions: 

(20) 
i 

Vx'Uoo = (21) 
i 

{f} and {g} are termed the auxiliary basis, aj is the set of coefficients which 

minimizes the error in the Coulomb repulsion energy subject to the constraint that 

<nj^^>=the total number of electrons. They are obtained by least squares fitting. bj° 

is the set of coefficients used to fit they cannot be optimized analytically like 

the a|, so the least squares fitting is performed over a set of grid points centered at 
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each atom. The error in the fitted potentials is also minimized with a weighted 

scheme. Implementing Eqs. (20) and (21) speeds up the calculations from to 

N^M, where N is the number of GTO's in the orbital basis and M is the total number 

of GTO's in the auxiUary basis (usually about the same as N). 

The program used in paper 1 makes use of frozen core electrons, called the 

model core potential (MCP) to further speed up the calculations. The core and 

valence orbitals are fit with an LCGTO expansion in a least-squares fitting procedure 

which minimizes the error relative to the numerical atomic calculation. A projection 

operator is used to ensure orthogonaUty of the frozen and valence orbitals. 

Derivation of the Corrected Effective Medium Theory 

Using the accurate DFT methods described above, it is a non-trivial, 

computationaly intensive problem to determine the energy and forces for tens of 

atoms. This is especially true for atoms which have many valence electrons, such as 

the transition metals^^. Therefore, methods known as "effective medium-type 

methods" have been developed specifically for systems containing many transition 

metals. 

In the effective-medium type methods, the real M-atom system is replaced 

with many effective systems, each of which is the atom embedded in jellium (a 

homogeneous electron gas with a uniform compensating positive background). The 

energy of embedding the atom in jellium is termed the embedding energy. In 

addition to this energy, correction terms are calculated which take into account 1\ 

the difference in homogeneity between the electron density distributions in the real 

and many-atom systems; 2\ the difference between the uniform positive background 
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and nuclear point charges; and 3\ differences in the spin-polarization between the 

real system and the unpolarized atom-jellium system. There are many effective-type 

methodsbut the only one of interest here is the corrected effective medium 

(CEM) theory^®-20. 

The definition of the interaction energy is the energy difference between a 

system of interacting atoms and the system of non-interacting atoms. 

AE({A,}) = E(gAi) - ^E(AJ (22) 
i i 

The embedding energy is defined as: 

AEj(A^;n) = ECAi^n^) - E(n) - E(Aj) (23) 

where the first term on the RHS is the energy of the atom-jellium system, and the 

second and third terms are the energy of the non-interacting jellium and atom 

systems respectively. Solving Eq. (23) for E(Aj) and substituting it into Eq. (22) 

gives: 

AE({Ai}) = ^AE/A,;n^) + E(%]A^) - ^[E(A^+n,) - E(n^)] (24) 
i 1 i 

The second and third terms on the RHS of Eq. (24) combine to form the correction 

energy. This can be spht into two parts: the Coulomb correction energy and the 

kinetic-exchange-correlation correction energy. 
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^Ei\A)) = + 

i 

- %)] + 

(25) 
G(E4) - E [G(4+/;() - G(M()] 

i i 

= X;A£/^.;«,) + AF, + A(?(t4^) 
i 

At this point OEM makes use of the superposition approximation to simplify 

the calculation. This states that the electron density at any point in space ~t is the 

sum of the spin densities from each atom. 

n^(f) = 5^n*(A.;?-Ri) (26) 
i 

This additive density approximation holds for each atom in jellium, so the Coulomb 

interaction in the atom-jellium and jelhum systems vanishes. 

The explicit form of the kinetic-exchange-correlation energy functional is 

G = /[t(ii^(?)) + :(n-®) + d? (27) 

where x  is the kinetic energy functional and is the exchange-correlation energy 

functional. The local Dirac and Gunnarrson-Lundqvist functionals are used for the 

exchange and correlation energy, respectively. For the kinetic energy, the following 

accurate Padé approximate representation of the full gradient expansion^^ is used. 
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T(n*(r)) = t (28) 
° (1-0.05X+9.99802x2+2.96085x3) 

xo(n"00) = ^(6i:T^*00^ (29) 

X = —(67^2)-^ (30) 
108 n*g)«V3 

As x-^°o, the kinetic energy functional becomes the Weizacker form: 

T(n'@ (31) 
Sn'ffl 

because the value of Vn/n^® becomes large. This overestimates the kinetic energy 

for small densities and large gradients, which will have the largest effect on weakly 

interacting systems. 

At this point, only the jelhum density remains to be determined. This was 

chosen so as to minimize the kinetic-exchange-correlation energy correction term, AG, 

since it is calculated non-self-consistently and depends on the jellium density. 

Because AG is a complicated functional of the jellium density, an analytic 

minimization of AG is not possible. The solution is to approximate the integrand in 

Eq, (27) with a quadratic in n"*" and n". 
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I' J*i 

n-{^^f-fy-{Ap'-R))dr - (32) 

2CÇ J {n*{Apr-R^ni + n'{A:J'-R^ni}dfi 

C is the coefficient of the quadratic term, n^ (A^; "r - ^) are the atomic spin densities 

(Hartree-Foek values were used) and are the jellium densities. These are 

unpolarized, so n^j = n'j = nj/2. Thus, the jellium density can be factored out of the 

third term on the RHS of Eq. (32). This leaves the sum of atomic orhitals for the up 

and down spins, which is just the atomic number. Thus, Eq. (32) can be rewritten 

as: 

AG = C^Ef <n*(Apr-É,)n*(Aj;r-R^) + 
' (33) 

n-(Apr-R,)n-(Aj;r-R.)}dr - CÇZ,7t. 

The minimization of the absolute value of this quantity leads to solutions 

which are independent of the constant C. The most symmetric solution was chosen: 

Hi = ^5^/inXAi;f-Ri)n*(Aj?-Rj) + n-(V-Ri)n-(A/-Rj)}(ff (34) 
Aj-i 

which can be written as follows for spin-unpolarized atoms: 
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n, = ^ E fn(f - Ri)n(r - Rj) df 

Note that the original fiinctionals are used to calculate AG; the quadratic 

approximation is only used to find the jeUium density n^. 
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PAPER 1. DENSITY FUNCTIONAL STUDY OF THE BONDING 

IN SMALL SILICON CLUSTERS 
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ABSTRACT 

We report the ground electronic state, equilibrium geometry, vibrational 

frequencies and binding energy for various isomers of 8i^(n=2-8) obtained with the 

linear combination of atomic orbitals-density functional method. We used both a 

local density approximation approach and one with gradient corrections. Our local 

density approximation results concerning the relative stability of electronic states 

and isomers are in agreement with Hartree-Fock and Moller-Plesset (MP2) 

calculations [K Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. 

The binding energies calculated with the gradient corrected functional are in good 

agreement with experiment (Big and Sig) and with the best theoretical estimates. 

Our analysis of the bonding reveals two limiting modes of bonding and classes of 

silicon clusters. One class of clusters is characterized by relatively large s atomic 

populations and a large number of weak bonds while the other class of clusters is 

characterized by relatively small s atomic populations and a small number of strong 

bonds. 
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INTRODUCTION 

Small silicon clusters display a rich variety of structures. These structures 

are neither open (chains, rings), like those of small carbon clusters, nor fragments of 

the most stable bulk (di^ond) silicon phase. Instead, the most stable Si^ clusters 

are usually compact but they are not always quasi-spherical and/or high-symmetry 

structures. For instance, Siy is a pentagonal bipyramid but 8i^ is a planar rhombus 

that is much more stable than the tetrahedral isomer of Si^^'®. Many theoretical 

studies based on electronic structure calculations^"^® have tackled the problems of: 

(1) predicting the relative stabilities of various Si^ isomers and (2) providing a 

detailed understanding of them. 

In addition, a number of empirical models have been developed for use in the 

simulation of condensed phases of silicon. These studies showed that it is very 

difficult, if at all possible, to devise a single classical potential that gives 

qualitatively correct descriptions of the bonding for vastly different arrangements of 

silicon atoms: crystalline phases, amorphous solids, defects, surfaces, liquids etc ... 

Typically, empirical models only do well at describing the selected properties and 

structures that are similar to those represented in the database used in adjusting the 

free parameters of the model. This kind of accuracy has been well exploited in the 

simulation of various processes: melting,^® dimer reconstruction of the (100) face,^^ 

the modelling of amorphous silicon,molecular beam epitaxy growth of the (100) 

surface,^®'^® keV bombardment of a silicon surface^^ and atom diffusion.^® 

Although devising empirical models for silicon clusters is even more difficult 
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than it is for surfaces and the bulk, a number of such models have been proposed 

recently.^®"^® A comparative study of Sij^ (n=4-10) with the first principles Car-

Parinello method and with empirical models showed that the latter "give only a poor 

description of the potential surface of the silicon microclusters"A similar 

conclusion was reached more recently for Since many of the classical silicon 

potentials are derived originally from fits to accurate calculations for the bulk,®^ one 

expects that these potentials will become more appropriate for larger clusters. 

However, without a direct check with either experimental data or first principles 

calculations for clusters of "intermediate" size (roughly 10 < n < 100), it is difficult to 

know at what point these models start giving accurate results. In addition, these 

potentials may never describe surface atoms correctly since the bonding at the 

surface is so different from bonding in the bulk. 

One of the most successful models is the very simple one proposed by 

Ackland.^®'®^ This model is built with elements known from quantum chemistry: 

repulsion of ionic cores, tetravalency of silicon atoms, sum of bond energies, relative 

strength of single and double bonds and bond-bond repulsion. Further progress 

along these lines could be made by refining Ackland's model on the basis of a careful 

analysis of first principles electronic structure calculations. Such calculations can 

provide much more than just a database of structure and energy points for parameter 

fitting. They can provide insight into which effects should be included in an 

empirical model. 

• As a first step toward the making of an empirical model suitable for sihcon 

bulk, surfaces and clusters, we have performed a series of Linear Combination of 
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Gaussian-Type Orbitals-Density Functional (LCGTO-DF) calculations on many 

silicon clusters with two to eight atoms. We have two objectives: (1) to provide a 

consistent set of equilibrium structures and binding energies (BE's) and (2) to provide 

a global picture of the different types of bonding that occur in small Si^j clusters with 

a rationale for the stabilities of the different structures. From the point of view of 

developing an empirical model, realization of the second objective provides a basis for 

constructing a qualitatively correct model while realization of the first gives a 

database for fitting adjustable parameters. 

Of course, these two objectives have been addressed in earlier electronic 

structure studies, particularly the series of papers by Raghavachari and Rohlfing 

(RR).^'® However, in the present work all structures were optimized within the Local 

Spin Density Approximation (LSDA), a method that includes correlation, whereas the 

optimization in earlier work was done at the Hartree-Fock (HF) level of theory for all 

except the smallest clusters (n^). As it turns out, the accuracy of the binding 

energies of silicon clusters determined with the LSDA is comparable to that of the 

MP4 method of RR. The gradient corrected functional calculations of the present 

work are even more accurate and the BE's obtained in this way probably constitute 

the most reliable consistent set of BE's for silicon clusters. Regarding objective (2), 

our DF calculations also provide a simple one-electron picture of bonding. We will 

use simple concepts of atomic populations and bond orders to analyze the electronic 

structure in a way that we think relevant to the development of an empirical model. 

A secondary goal of this work is to further assess the importance of gradient 

corrections to the exchange-correlation energy and to judge the accuracy of energy 
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differences calculated with these corrections. Previous work on this subject showed 

that the inclusion of gradient corrections greatly improves the accuracy of bond 

energies for a variety of systems: homonuclear diatomic molecules,®® metal-ligand 

bonds,®® a van der Waals molecule (Mgg)^^ and organic molecules.^®'®® Recently 

Becke reported calculations with gradient corrections to the exchange energy for a set 

of 55 molecules with accurately known atomization energies.^® In the present work 

we consider the issue of the accuracy of gradient corrected functional secondary, not 

because it is unimportant, but because it has already been fairly well tested and our 

results essentially confirm previous findings. 

The rest of this paper is divided as follows. First, we give some technical 

details on the method used for the computations. Then the basic results (equilibrium 

geometries, electronic ground states, EE's and vibrational frequencies) are presented 

for each cluster size and compared to other theoretical studies. In the next section 

we show and discuss various non-empirical and empirical estimates of the EE's of 

silicon clusters taken firom our own work and from that of RR. The implications 

regarding the abundance and stability of various clusters in molecular beams are 

briefly touched upon. The last section provides an analysis of the bonding in terms 

of atomic populations, hybridization and promotion energy, valency, bond lengths and 

bond orders. 
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COMPUTATIONAL DETAILS 

We used the density functional electronic structure program deMon developed 

by St-Amant and Salahub"^^ that was briefly presented recently.^^ Gaussian atom-

centered basis functions are used to expand the Kohn-Sham orbitals and to fit the 

associated density and exchange-correlation potential. The exchange-correlation 

energy is evaluated by numerical integration on a grid very similar to that of Becke"^® 

with a random orientation of each quasi-spherical shell of angular points as 

suggested by Jones et al.^ The geometry optimization and evaluation of force 

constants was carried out using the LSD potential of Vosko, WiUc and Nusair 

(VWN),^® evaluating the first energy derivatives analytically^® and the second 

derivatives by numerical difference.'^^ We then did calculations at the VWN-

optimized geometries with the more accurate gradient-corrected functional of Perdew 

and Wang (PW).^^ The binding energies calculated that way will be denoted as 

"PWATWN". 

We did not treat the ls^2s^2p® core of the silicon atoms explicitly, but used a 

model core potential instead. The valence orbital basis set consisted of three s 

functions, three shells of p functions and one shell of d functions, with the 

contraction pattern (311/211/1). The auxiliary bases for fitting the density and 

exchange-correlation potential both consisted of five s, three p and three d 

uncontracted gaussians. The full details on the model core potential and orbitals 

basis used can be found in the appendix of Ref. 49. The auxiliary bases used in the 

present work are similar to those reported in Ref. 49. 
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RESULTS 

The structures we investigated are plotted in Figs. 1-6. We denote the 

structures with three numbers n, i, and j, and a letter 1, as "n.i.j.l". n is the number 

of atoms in the cluster, i is the Hessian index (the number of imaginary frequencies) 

and j orders the structures with some n according to their BE, the most stable having 

j=l. The letter 1 denotes the spin multipUcity of the electronic state and, in this 

work, it can be either s (singlet) or t (triplet). For example, 4.0.2.t is the second most 

stable structure among four-atom clusters we investigated: it is a TninîTrmm on a 

triplet state potential surface. We supplement the structure name with point group 

symmetry label and/or descriptive comments when this information is helpful. 

The essential results are in Tables I, II and III. In Table I we report the bond 

lengths in Angstroms and Mayer bond orders®^ and the BE's, calculated by the 

PW/VWN method, in eV. The BE's are calculated from the ground vibrational state, 

and thus include the zero point energies. The vibrational frequencies (cm'^) and zero 

point energy (ZPE) (kcal/mol) of all structures are listed in Table II. For 

completeness and easy reference we give the VWN and PWA^WN total energies 

(hartrees) in Table III. 

The rest of this section is divided in seven subsections according to cluster 

size. Each provides some additional details and comments on the results reported in 

Tables I, II and III and à comparison to other theoretical studies and, when 

available, to experiment. 
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Sia 

The two lowest electronic states, a (R^ = 2.280 Â) and a (Rg = 2.164 Â) 

are almost equally stable. At the VWN level the is found to be more stable by 

only 0.01 eV. An earlier LCGTO-LSD study"^® also using the VWN potential 

predicted the to be less stable by 0.11 eV and found the equilibrium distance to 

be shorter by 0.01 Â for both states. This kind of discrepancy is not unexpected: 

deMon evaluates the exchange-correlation potential and energy more accurately than 

the program used in Ref. 49 because it uses a much better grid (more angular points, 

random orientation of shells, better grid point weights). The inclusion of gradient 

corrections reverse the order of stability and makes the the more stable state, by 

0.07 eV. The PW/VWN binding energy of Sig in its ground state is 3.62 eV, 0.41 eV 

larger than the experimental value of 3.21 eV.®® 

Sig 

We looked at three structures: the equilateral triangle, the isosceles triangle 

and the linear structure, as shown in Fig. 1. The absolute miniTrmm is the 

equilateral triangle in its triplet state, 3.0.l.t. The isosceles triangle (3.0.2.s) has a 

BE only 0.07 eV smaller than that of 3.0.1.t. This energy difference is too small for 

us to determine which structure is most stable. Improvements in the grid, basis sets 

and exchange-correlation functional could reverse the order. This very small energy 

difference is in line with other theoretical results. The other calculations predict the 

isosceles form to be shghtly more stable, by 0.17 eV at most^'®'^ except the LSD 

calculation of Dixon and Gole®^ which predicts 3.0.1.t to be more stable than 3.0.2.S 

by 0.07 eV. The BE of Sig is known experimentally to be 7.6±0.2 eV.®^ Our 
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calculated value (7.82 eV) is very close to this. 

For 3.0.2.8 we calculate an equilibrium angle of 81.4°. This is very close to 

the values found in Ref. 1, 6 and 7 which all fall in the range from 78° to 81° and 

also close to 82.5°, the value calculated by Dixon and Gole in their LSD study.® ̂  The 

bond lengths we calculate for the two structures (S.O.l.t: 2.273 Â, 3.0.2.S: 2.179 Â) are 

a little shorter than those calculated with the CAS-SCF method^ (2.30 Â and 2.19 Â) 

and in agreement with the other LSD determination®^ (2.286 Â and 2.183 Â). The 

vibrational frequencies we calculate for 3.0.2 s (171, 540 and 548 cm"^) are 

comparable to those found by Grev et al.® (157, 570 and 574 cm"^) and by 

Raghavachari^ (206, 560, 582 cm"^). Our frequencies for both S.O.l.t and 3.0.2.S 

agree with those of Dixon and Gole to within a few cm"^. The level of agreement 

with this LSD study of Sig is gratifying as it suggests that the numerical errors in 

both calculations (due to basis sets, grids, etc ...) are small. 

There is also a triplet state with isosceles structure that is a minimum. It has 

an apex angle of 123° and a BE of 6.47 eV, 1.35 eV less than for the absolute 

minimum. The most stable linear structure has a singlet ground state and is 0.56 eV 

above the minimum. This is again in good agreement with the works of 

Raghavachari^ and Balasubramanian^ who find this energy difference to be 0.43 and 

0.77 eV respectively. 

Si4 

Fig. 2 shows the structures that we considered. The most stable one is clearly 

the rhombus in a singlet state (4.0. l.s). The four equivalent bond lengths in 4.0.1 s 

are 2.316 Â and the shortest interatomic bridge distance is only 2.397 Â, suggesting 
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that these atoms are bonded. Indeed, the Mayer bond order for this pair of atoms is 

1.03. All previous electronic structure calculations^'®"^®'^^ similarly find that Si^ is a 

rhombus in a ^Ag state with bond lengths close to 2.3 and 2.4 Â. The vibrational 

frequencies we computed (55, 248, 348, 436, 464 and 495 cm'^) differ substantially 

from those obtained by the HF method (137, 157, 328, 371, 425 and 472 cm'^).^ It 

has been pointed out that there are important correlation effects in the long bond.^® 

That could be the reason the LSDA and HF frequencies differ so much. 

Two other structures lie at approximately the same energy, roughly 0.7 eV 

higher than 4.O.I.S. One (4.0.2.t) is a triplet rhombus with four slightly shorter 

bonds (2,28 Â vs 2,32 Â) and a larger long bond (2.53 Â vs 2.40 Â). The other 

(4.0.3.t) is a distorted tetrahedron with €2^ symmetry in a triplet state. The Cg^ 

trigonal pyramid (4.0.5.t) and the tetrahedron (4.0.7.s) are respectively 2.1 and 2.5 eV 

less stable than 4.0.1 s. The square structure (4.1,4,t) is a transition state and 

another triplet, the linear structure (4,2,6,t), has Hessian index of 2. 

For Si^ we investigated all the structures considered by Raghavachari^ except 

his structure 5. We find the same electronic ground states and Hessian index for all 

structures. We also agree on the relative stabilities but with two differences: (1) we 

find that the trigonal pyramid is 0.29 eV more stable than the tetrahedron, whereas 

Raghavachari found the tetrahedron to be the more stable of the two by 0.47 eV and 

(2) we find that the most stable triplet is the rhombus 4.0.2.t whereas Raghavachari 

apparently did not consider this structure in the triplet state and found that the 

most stable triplet was a distorted tetrahedron. 
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Of the five structures we considered, shown in Fig. 3, only two are minima. 

The trigonal bipyramid in its singlet state (5.0. l.s) is the absolute minimum, with a 

BE of 16.50 eV, and the planar €2^ structure (5.0.2.s) lies 1.03 eV higher. The other 

high-symmetry structures we looked at are the square pyramid 5.1.3.S with 

BE=15.18 eV, the pentagon 5.4.4.t with BE=13.09 eV and the tetrahedron 5.3.5.s 

with BE=11.14 eV. Our predicted geometry for 5.0.1.S is somewhat different from 

the HF 6-31* geometry of Ref. 2. The axial to equatorial interatomic distance we 

calculate is 2.304 Â, 0.034 Â shorter than that of Ref. 2 (2.338 Â). We get a smaller 

triangle (with sides equal to 2.98 Â compared to 3.26 Â) and a larger axial-axial 

distance (3.05 Â vs 2.78 Â). 

Sie 

The Sig geometries that were studied are shown in Fig. 4. We found three 

related low energy structures, a square bipyramid (6.2.3.s) and two distorted forms of 

it (6.0. l.s and 6.0.2.s), with singlet ground states that have BE's within 0.02 eV of 

each other. Considering the numerical uncertainty on our calculated energies, it is 

not possible to determine which structure is more stable. Moreover, the potential 

surface in the vicinity of these three structures is so flat (see the frequencies in Table 

II) that we cannot even be sure which structures are minima and which are higher 

order critical points. We note that two other DF studies®'^^ found 6.2.3.S as the most 

stable form of Sig but in both cases the authors do not report vibrational analysis 

and do not mention investigating structures 6.0.1.S and 6.O.2.S. 

Using the HF 6-31G* method, Raghavachari found similar results regarding 
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these three structures. He calculated the relative energies of 6.0.1.S, 6.0.2.S and 

6.2.3.S to be 0, 0.04 eV and 0.39 eV and found their Hessian indices were 0, 1 and 2, 

respectively. These results are similar to ours but it is apparent that correlation 

stabilizes 6.2.3.S relative to the two other structures. The precise determination of 

BE's and vibrational frequencies for the most stable structures of Sig presents a 

tough challenge for theory. Presently, methods that may be accurate enough to 

resolve this question are too time consuming to be applied to six-atom clusters. For 

now, we can only conclude from theory that there may be two, or even three, almost 

isoenergetic isomers of Sig and that these have some very soft vibrational modes 

along which interconversion could occur. 

The octahedral Sig cluster (6.2.4.t) has a Hessian index of 2, a triplet ground 

state and is 0.7 eV less stable than the square bipsramid. The bicapped 

tetrahedron (6.2.5.s) is 1.6 eV less stable than structures 6.0.l.s and 6.0.2.S and has 

two imaginary frequencies. 

Sir 

For the seven- and eight-atom clusters, we examined only a few structures, 

the most likely candidates for the global minimum. For the most part, our results 

regarding the ground state electronic structure and the relative stability of various 

structures of Si^ (n=3-6) are in line with those of Raghavachari.^ There is no reason 

to think that this would change for larger clusters and there is no point in . 

duphcating the extensive work of RR,^"® However, we want to compare BE's over a 

wider range of cluster size and provide more accurate estimates of the BE's of the 

most stable Si„ clusters. 
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The only three Siy clusters we considered are the pentagonal bipyramid 

7.0. l.s, the tricapped trigonal pyramid 7.0.2.S and a Cgy structure 7.2.3.S, all of which 

are shown in Fig. 5. The pentagonal bipyramid is the most stable with a BE of 24.91 

eV. The two apex atoms have six neighbors and are therefore overcoordinated. Our 

value of is 2.514 Â, 0.07 Â shorter than the HF/6-31G* value of Ref. 3 and, 

contrary to Ref. 3, we find significant bonding of these atoms (bond order P22=0.64). 

This cluster is compact and quasi-spherical. These attributes (long bonds, high 

coordination, compact and nearly spherical structure) are usually associated with 

metal clusters and, in that sense. Sly is peculiar. The energy of 7.0.2.S relative to 

7.0. l.s is +0.60 eV (as compared to +0.95 eV found in ref. 3). The bond lengths we 

find for these two clusters are within 0.04 Â of those obtained by the HF method 

except for the longer bonds: our Si^-Sig interatomic distance in 7.0.l.s is 2.514 Â vs 

2.582 Â and the Si^-Sig distance in 7.0.2.S is 2.602 Â vs 2.676 Â. 

The geometry we find for 7.2.3.S is qualitatively different from that reported 

by Patterson and Messmer.^® The bond lengths we calculate for the atom pairs (1,4), 

(6,7) and (1,7) are 0.54 Â, 0.26 Â and 0.21 Â shorter than those of Ref. 10. The bond 

orders for (6,7) and (1,7) are 1.44 and 1.05 respectively indicating strong bonding for 

these atom pairs whereas HF calculated bond lengths (2.50 Â) are typical of weak 

bonds. 

Sig 

Of the five eight-atom clusters we investigated, shown in Fig. 6, only 8.0. l.s is 

a minimum. This is the structure that Raghavachari and Rohlfing^ suggest as the 

global minimum of Sig. The four other structures, aU those considered by Patterson 
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and Messmer,^® have values for the Hessian index of 1, 1, 2 and 4, respectively. 

This illustrates the difficulty of finding minima (especially the global 

minimum) of moderately large clusters by trial and error and standard optimization 

algorithms and the importance of characterizing the critical points with a normal 

mode analysis, which was not done in Ref. 10. 

The relative stabiUty of the four Sig structures 8.1.2.S, 8.1.3.S, 8.2.4.S and 

8.4.5.S calculated by PW/VWN differ significantly firom that found by Patterson and 

Messmer^® in their HF study and differ also from their Generalized Valence Bond 

EE's calculated at HF optimized geometries (GVB/HF) as shown below: 

Relative stability (eV) 

cluster: 8.1.2.S 8.1.3.S 8.2.4.S 8.4.5.S 

PW/VWN 0.0 0.43 1.85 2.51 

HF^® 0.0 2.48 1.92 1.20 

GVB/HF^® 0.16 0.0 

Taking PW/VWN values as the reference, we see that the HF relative energy for 

8.1.3.S is in error by about 2.0 eV and the GVB/EIF relative energy of 8.4.5.S is in 

error by about 2.5 eV. This shows that there is a real danger of underestimating the 

stabihty of a given cluster size when structures are optimized with the HF method 

and a more accurate (correlated) method is used subsequently only to calculate the 

energy of the most stable structure. 
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TRENDS IN BINDING ENERGIES 

The experimentally known BE's for Si^ are for Sig, BE=3.21 eV,®® and Sig, 

BE=7.6±0.2 eV.®^ (An earlier estimate of BE for Sig is 7.3±0.5 eV®® but we assume 

that 7.6±0.2 eV is the most accurate value). Our calculated BE's for these two 

clusters are 3.94 and 8.83 eV by the VWN method (errors: +0.73 and +1.2±0.2 eV) 

and 3.62 and 7.82 eV by the PW/VWN method (errors: +0.41 and +0.2±0.2 eV). As 

usual the BE's are overestimated at the LSDA level and the gradient corrections 

bring the values closer to experiment. The BE's calculated by MP4/6-31G*^'^ for Si2 

and Sig are 2.60 and 6.34 eV (errors: -0.64 and -1.4+0.2 eV). On that basis, the VWN 

BE's seem as accurate as those calculated by MP4 and the BE's calculated by 

PW/VWN are more accurate than both VWN and MP4. Moreover, empirically 

corrected MP4 and VWN BE's are closer to the PW/VWN values than to the 

unaltered MP4 and VWN BE's. This gives further support to the PW/VWN BE's (and 

also to the empirical corrections). We will now consider these empirical corrections 

to MP4 and VWN BE's. 

Raghavachari proposed to estimate the true BE's of silicon clusters by scaling 

the BE's calculated with the MP4 method according to the following relation. 

BE(Si^; corrected MP4) = 1.2 -BE(8i^; MP4) 

With this scaling, the two experimental values are reproduced very well (3.12 vs 3.21 

and 7.61 vs 7.6±0.2). Moreover, this scaling increases all MP4 BE's which are 

generally expected to be lower hmits to true BE's. RR applied this scaling to obtain 

their most accurate estimates to the Si^ clusters BE's. We looked for a similar 
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correction to VWN EE's, which are expected to almost always overestimate true EE's, 

and found two "reasonable" ways of correcting. 

We can reproduce the experimental results almost exactly by correcting the 

energy of the isolated silicon atom by the empirical value -0.38 eV. This yields 

correction #1, expressed as: 

EE(Si^; correction #1; VWN) = BE(Si^; VWN) - n -0.38 eV 

This is fundamentally different from the scaling used in MP4. The correction to MP4 

is based on the intuitive knowledge that lack of correlation in the clusters' 

wavefunctions leads to a systematic underestimate of the bonding interactions. 

Assuming that this underestimate is a fixed fraction of the interactions leads to the 

MP4 scaling relation. The VWN correction is based on the assumption that the 

clusters at their equilibrium geometry are very weU described and that all the error 

is due to a poor description of the isolated atom. This is rationalized by noting that 

silicon atoms have more compact orbitals than clusters. This gives rise to a larger 

self-interaction error for N separated atoms than for a N-atom cluster. 

A slight modification to correction #1 is obtained if we assume that unpaired 

electrons are atomic-like in that they produce self-interaction errors that are as large 

as those of atomic orbitals. Then, the size of the correction is proportional to (4n-m), 

where m is the number of impaired electrons in the cluster and the factor 4 is there 

because silicon atoms have four valence electrons. The proportionality factor that 

best fits the experimental results is 0.123, giving us the following expression: 

EE(Si^; correction #2 VWN) = EE(Si^; VWN) - (4n-m) -0.123 eV 

Both corrections #1 and #2 are probably best viewed as rough approximations to the 
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self-interaction corrections®® of the local density approximation. 

Of course, reproducing two known values using an empirical method with one 

adjustable parameter is not a great accomplishment. But there is more evidence in 

support of these corrections. First, the two sets of EE's, "corrected MP4" and 

"correction #1 VWN", are nearly equivalent. Either they are both very close to the 

true values or, somehow, they deviate in nearly the same way from these. But the 

MP4 and VWN methods come from seemingly quite different approaches to electronic 

structure and, as we noted above, the corrections are fundamentally different. 

Second, there is convincing evidence from the theory and the practice of gradient 

corrections that PW/VWN BE's are almost always much more accurate than VWN 

BE's. Therefore, the better agreement of these two sets of corrected BE's with the 

PW/VWN BE's than with uncorrected BE's constitute further support in favor of the 

corrections. Correction #2 gives BE's that are even closer to those calculated by 

PWATWN. 

In Table IV we list the BE's of the global minima for each cluster size 

calculated with six different methods: MP4, VWN, scaled MP4, corrected VWN (#1 

and #2) and PW/VWN. The experimental and PW/VWN BE's are always bracketed 

by MP4 and VWN BE's. The scaled MP4 and corrected VWN (#1) BE's are within 

0.25 eV of each other, except for Sig and Siy for which the differences are 0.47 and 

0.44 eV respectively. The agreement for these clusters could improve if the MP4-

optimized geometry differed substantially from that optimized by HF. For these two 

sets of BE's, the differences between the estimates of the cohesive energy, in 

eV/atom, are: 0.03, 0.03, 0.05, 0.09, 0.01, 0.06 and 0.03. The corrected MP4 and 
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correction #1 VWN cohesive energies are not too far from those calculated by 

PW/VWN and the correction #2 VWN is still closer to PWA^WN. The difference in 

cohesive energy between corrected VWN and PW/VWN increases smoothly with 

increasing n for the global minima: 

BE(correction #1 VWN)/n BE(correction #2 VWN)/n 
n -BE(PW/VWN)/n (eV/atom) -BE(PWAAVN)/n (eV/atom) 

2 -0.20 -0.21 
3 -0.04 -0.07 
4 +0.03 -0.08 
5 +0.09 -0.02 
6 +0.14 +0.03 
7 +0.18 +0.07 
8 +0.18 +0.06 

The same trends in the various computed BE's are found for the local minima as 

well. 

We will now exclusively discuss the PW/VWN BE's, which we take as the best 

estimates because they are not empirical and agree well with the available 

experimental data. 

Fig. 7a shows the energy required for the disproportionation reaction as a 

function of n: 

2 Sin ^ 8in+l + Si^-l 

This gives a sensitive measure of relative stability. Si^ and Siy are especially stable 

toward disproportionation. Another measure of cluster stability is given by the 

incremental binding energy ABE^, defined as: 

ABE„ = BE(Si^) - BE(Sin.i) 

This is plotted in Fig. 7b. This also characterizes Si^ as especially stable. The limit 
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for large n of ABE^ is the bulk cohesive energy, 4.63 eV/atom.®® The curve in Fig. 7b 

shows that silicon clusters with n<8 are still far from this limit. 

This brings us to an important point. RR invoked the relatively high values of 

ABEjj for n = 4, 6, 7 and 10 as evidence that these are "magic numbers" for silicon 

clusters. Indeed, mass spectrometry revealed large quantities of six-, seven- and ten-

atom silicon clusters®"^'®® and photofragmentation cross sections are relatively small 

for four-, six- and ten-atom clusters.®^ However Sig is not really more stable than Sig 

according to our PW/VWN calculated Djj and ABE^. Our results suggest an 

alternative explanation to the large quantities of six-atom clusters detected by mass 

spectrometry. It could be due to the presence of two stable isomers and/or to a high 

density of vibrational states and correspondingly large vibrational partition function 

resulting from the flatness of the potential surface (see the frequencies in Table II). 
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BONDING IN SILICON CLUSTERS 

Our discussion of bonding will be based on atomic charges (qp and s, p and d 

populations (nsj, npj and ndj) obtained by MuUiken analysis, atomic valency (V) 

calculated in the way proposed by Mayer,interatomic bond lengths (dy) and Mayer 

bond orders (py). The populations and bond orders calculated with VWN and PW 

potentials were always very similar. We report only those calculated with the VWN 

potential. 

One could expect all q/s and ndj's to be nearly zero. Assuming these are zero, 

each atom i would have a s population of nsj and a p population npj equal to 4.0-nsj. 

The magnitude of the atomic charges were indeed small, usually smaller than 0.05 

and all smaller than 0.15 except one. The largest values of I q I and ndj are those of 

the central atom of 5.3.5.S, q=-0.27 and ndj=0.30. Typically, d atomic populations are 

in the range of 0.05 to 0.20. 

Assuming that all qj's and nd^'s are zero is an oversimplification, but still 

useful in looking for trends. Using this assumption, values of nsj are expected to 

range from 2.0 (s^p^ hybridized atoms) to 1.0 (sp® hybridized atoms). Actually, nsj 

ranges from 2.02, the value for the end atoms of 4.2.6.t, to 1.28, the value for the 

central atom of 5.3.5.S. We used the central atom of the tetrahedral molecule 

Si(SiHg)^ as a model for a silicon atom in bulk diamond Si. The s, p and d 

populations of this atom are 1.38, 2.80 and 0.06 and the charge is -0.24. The average 

over the five silicon atoms of Si(8il^)^ are ns=1.40, np=2.50, nd=0.03 and q=+0.05. 

This is far from the ideal sp® hybridization. Essentially similar results were 
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obtained by RR.® 

In the simplest picture of hybridization, a single number would be sufficient to 

characterize the hybridized state of a sihcon atom. We choose this number to be 2-

nSj, the number of electrons promoted from stop atomic orbitals. Intuitively, one 

expects a correlation between 2-nSj and the number of bonds in which an atom i 

takes part. More precisely, assuming that each unpaired electron of an atom is 

involved in a covalent bond, and taking the Mayer valency V as a measure of the 

number of bonds into which an atom participates, one expects V=2+2(2-nSj). A plot of 

V as a function of 2-nSj for the 62 distinct silicon atoms in the set of clusters we 

studied (Fig. 8) indeed shows a linear relationship. Also, the straight line that best 

fits the dataset has a slope of 2.0 as expected. The intercept however is 2.65 instead 

of 2.0. 

The two basic attributes of a bond between atoms i and j in our analysis are 

the bond length dy and bond order p^j. These are given in Table I. Fig. 9 is a plot of 

p as a function of d for all bonds shorter than 3.0 Â but excluding the bond in Sig. 

The smooth hne is a polynomial fit to a subset of the data points and is there only to 

guide the eye. There is a rough correlation between d and p. Some points break 

away from the rest. These interesting bonds will be discussed below but we first 

comment on the general features of Fig. 9. 

The data points almost all fall into two regions of the d-p plane and the bonds 

can be classified accordingly. There are short strong bonds with d < 2.35 Â and p > 

0.85 and long weak bonds with d > 2.35 and p < 0.85. In the short bond region p 

decreases rapidly with increasing d whereas in the long bond region p decreases 
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slowly and reaches a near constant value with increasing d. The breakup of the data 

points in two classes corresponds roughly to two modes of bonding in silicon clusters: 

directional covalent bonds, for which one expects p>l,0, and non-directional and/or 

delocalized bonds typical of metallic systems. 

The bonds with exceptionally large bond orders at d=2.40 Â and d=2.53 Â are 

those connecting atoms 1 and 2 in the rhombus structures 4.0.1.S and 4.0.2.t 

respectively. The strain in the 1,3,2 and 1,4,2 angles prevents atoms 1 and 2 from 

attaining their ideal covalently bonded distance (roughly 2.3 A). The other bond with 

unusually large bond order, d=2.84 Â, is the bond connecting atoms 2 and 3 in 

cluster 3.O.2.S. The rationalization here is that these atoms have extremely low 

coordination and high propensity to bind. But again, the repulsion between the 1,2 

and 1,3 bonds associated with closing the 2,1,3 angle opposes the decrease of dgg. 

One of the most interesting features of small silicon clusters is that they 

display characteristics of both metallic and covalent materials. We will define three 

quantities that can help assess the metallic vs covalent nature of clusters. The first 

is a measure of the promotion energy cost (calculated fi-om s atomic populations) 

relative to the binding energy. This should be smallest for metalhc siHcon and 

largest for covalent silicon. The second quantity we wiU use is the average 

coordination of atoms in the cluster. Roughly speaking, this should be at most 4.0 

for covalent clusters since silicon atoms have four valence electrons. For metallic 

sihcon, the average coordination can be larger than 4.0 (for fee bulk sihcon it is about 

12.0). The third and most important quantity is the HOMO-LUMO gap. This is the 

cluster equivalent of the band gap of extended systems. Metallic clusters should 
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exhibit small gaps, covalent clusters large gaps. The variation in the gaps among the 

different clusters is fairly potential-independent. We therefore only report the 

HOMO-LUMO gaps found with the VWN. potential. We will now define more 

precisely these quantities and use them to evaluate the nature of the clusters. 

We calculated the s^p^ to sp® excitation energy for an isolated silicon atom by 

taking the difference in the total energies from PW/VWN calculations and found it to 

be 4.07 eV. We define the promotion energy of an atom i in a cluster as this energy 

difference (4.07 eV) multiplied by 2-nSj. By summing over all atoms of a cluster we 

calculated a total promotion energy. We further define the "intrinsic" binding energy 

(IBE) of a cluster as the sum of the binding energy calculated with respect to ground 

state silicon atoms and of the total promotion energy, IBE=BE+PE. The PE is a 

rough equivalent of the energy, measured relative to n ground state atoms, of a 

system of n separated atoms in excited states that correlates with the ground state of 

the cluster. The IBE is the BE of the cluster measured relative to this n separated 

excited atoms system. The values of BE, PE and IBE derived from PW/VWN 

calculations and the ratio PE/IBE are given in Table V. The main points are that 

the values of PE are not small (they are about 20% of the IDE's) and they are not 

nearly constant for a given cluster size. The ranges covered by PE's for the clusters 

we studied are 0.37, 2.93, 1.89, 1.42,1.44 and 2.85 eV for n=3 to 8. 

The ratio PE/IBE can be used to classify clusters. Large values of this ratio 

should be typical for covalently bonded systems in which the hybridization of atoms 

tends toward sp.® Low values of PE/IBE are expected for metallic-like clusters in 

which atoms are overcoordinated, bonds are rather long and the stabilization 
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associated with strong sp^-sp^ bonds is offset by the promotion energy cost. With few 

exceptions, the more open structures show the largest values of PE/IBE. Linear and 

cyclic structures (2.0. l.t, 3.2.3.S, 4.0.2.t, 4.2.6.t, 5.4.4.t) have an average PE/IBE value 

of 0.27 whereas the more compact, nearly spherical "metallic" clusters (4.0.5.t, 

4.0.7.S, 6.0.l.s, 6.0.2.S, 6.2.3.S, 7.0.1.S, 8.2.4.s) have an average PE/IBE of 0.19. 

Empirical models proposed so far have failed to predict accurately energy 

differences in systems having silicon atoms with low coordination. Modelling the 

hybridization state of atoms and the IBE's may be a fruitful approach to the 

description, in a single model, of systems with low coordinated Si atoms and systems 

with highly coordinated Si atoms. 

The second measure of the covalent/metallic character of clusters we propose 

is based on the picture that covalent clusters have a small number of strong bonds 

while metallic clusters have a large number of weak bonds. We define Xj, the 

coordination of atom i, as the ratio of the square of the sum of bond orders and the 

sum of the squares of the bond orders involving atom i: 

j 

One expects Xj to be slightly larger than 4.0 (because of some derealization) for 

atoms in diamond silicon, the prototypical covalent silicon system. As shown in 

Table VI, Xj is 4.32 for the central atom of Si(8iHg)^. We arbitrarily choose this 

value as the frontier between "metallic" and "covalent" silicon atoms. To classify 
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clusters, we simply take <x>, the average of the Xj's over all atoms i of a cluster, as 

the measure of the metallic character. 

Clearly, <x> camiot be larger than 4.0 for silicon clusters with less than 6 

atoms and therefore all these clusters are regarded as "covalent". The situation is 

more interesting for 6-, 7- and 8-atom (and larger) clusters. Among these larger 

clusters, we found only three covalent-like clusters and none of these is a miniTmim 

The three covalent-like clusters are rather open structures and their PE/IBE ratios 

(0.23, 0.29 and 0.27) are large. Contrary to RR, we find that many atoms have 

coordination larger than 5. For instance, Xj is 6.0 for the axial atoms in 7.0.1.S and 

the central atom of 7.O.2.S. Our definition of coordination is unlike that used by RR 

but we think that the difference is due mostly to the type of calculation. More 

precisely, we believe that methods with no or little correlation, the HF method in 

particular, do not describe accurately overcoordination of atoms. 

The quantities PE/IBE and <x> give a consistent classification, provided that 

comparisons are made within a given cluster size for clusters with less than six 

atoms. With few exceptions, <x> is largest for those clusters that have the smallest 

PE/IBE. We stress that Vj and Xj give very different and complementary information 

on the coordination of an atom i. For singlet states Vj is exactly the sum of all bond 

orders related to a given atom i whereas x^ is calculated as shown above. Note that 

V| and <x> (or Xj) foUow opposite trends with respect to s atomic populations. 

Curiously the HOMO-LUMO gap seem to follow a trend opposite to what is 

expected from the values of PE/IBE and <x>. The clusters classified as "metalhc" 

with respect to <x> and PE/IBE typically have larger gaps than "covalent-like" 
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clusters. In fact, the gap correlates better with the binding energy. The most stable 

clusters of 5, 6, 7 and 8 atoms are also those that have the largest HOMO-LUMO 

gap in their size category. Therefore, metallic and covalent characteristics coexist 

not only for different silicon clusters, but, in general, within a given cluster. Silicon 

clusters having all the properties of a metal, or all those of a semiconductor, 

presumably exist only at much larger cluster size. The HOMO-LUMO gaps 

calculated for the most stable cluster isomers range from 1.05 eV (for 4.0.1.s) to 2.12 

eV (for 7.0. l.s) and are therefore all larger than the LSD value for bulk diamond 

silicon, 0.5 eV®® (which is an underestimate of the experimental band gap of 1.17 eV 

for diamond silicon).®® 
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CONCLUDING REMARKS 

To a large extent our results concerning the structure and ground electronic 

state of the most stable silicon clusters and the relative stability of isomers and of 

different-size clusters agree with those of RR.^'® One significant difference is seen 

for the six-atom cluster for which we do not find an unusually large BE. However, 

Sig is unique because it may have two nearly isoenergetic isomers and some of the 

calculated vibrational frequencies are extremely small. These features imply a large 

value of the vibrational partition function and a large entropie factor favoring Sig 

formation. This may be why some experiments on silicon clusters characterize Sig as 

a "magic number" cluster. 

We tried to divide the silicon clusters into two classes: "metalhc" and 

"covalent". Three criteria were used for this classification: the size of the promotion 

energy relative to the intrinsic binding energy; the average coordination number; 

and, the HOMO-LUMO gap. Most clusters have characteristics of both metals and 

semiconductors. The most stable six-, seven- and eight-atom clusters are metallic-

like in that their atoms have coordination numbers well above 4.0 and are in 

hybridization states closer to s^p^ than to the hybridization of the central atom of 

Si(SiHg)^. These clusters are covalent-like in that they have a large HOMO-LUMO 

gap. True metallic and semiconductor properties probably develop only for much 

larger clusters than those considered here. 

The BE's calculated from MP4 and VWN methods are quite different, but 

simple corrections bring them into almost perfect agreement with experiment and 
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with each other. Yet, the two methods are essentially different, as are the nature of 

the corrections. The correction to MP4 assumes that a fixed fraction of the binding 

energy is missing due to incomplete correlation. The correction to VWN assumes 

that the error in BE's arises from an improper treatment of the atom (and, for 

correction #2, of impaired electrons). Given the dissimilitude of the two 

computational methods and the level of agreement, these corrected BE's probably 

constitute good estimates of the true BE's. Further evidence for this is the good 

agreement with a third set of BE's, those calculated with the PWA^WN method. 

Actually, we favor this last set of BE's since they result from a truly first-principles 

method and yet the values agree with the two experimentally known BE's. 

The calculated structures and PW/VWN BE's presented in this paper can be 

used as a database in constructing empirical models or classical potentials for use in 

molecular dynamics. Moreover, we presented bond orders and atomic populations 

that may help further. 

One important feature is that the hybridization of silicon atoms varies 

significantly from case to case. We think that this must be included in some way in 

a model for it to be appUcable to the diverse bonding situations occurring in clusters, 

on surfaces and in the bulk. A promising approach would be to model the 

hybridization state of atoms and fit our calculated promotion energies (PE) and 

intrinsic binding energies (IBE) separately. A classical potential constructed with 

this approach must include a sum of atomic terms (the atomic promotion energies). 
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NOTE ADDED IN PROOF 

After submission of our paper a Gaussian-2 (G2) study reporting EE's for the 

most stable isomers of Si^ (n=2-5) was published.®^ The four calculated EE's (3.19, 

7.41, 11.95 and 16.15) are smaller than our PW/VWN values by a near constant 

amount. The G2 EE's are essentially perfect agreement with experiment for n=2,3 

and probably constitute the best theoretical estimates for n=4,5. The agreement in 

the absolute and, especially, in the relative EE's between the G2 and PWA^WN 

methods is excellent. This is a good indication that the relative values of the 

PW/VWN EE's of the 30 cluster structures reported here are highly accurate. 
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Table I; Structural data and binding energies, which include the zero point 
energies, for Si clusters. 

structure^ [(bonded atoms) bond length (Â): bond order] PW/VWN BE(eV) 

Minima 

2.0.1.t [(1,2) 2.280 ; 1.91] 3.62 
2.0.2.t [(1,2) 2.164 : 1.90] 3.55 

3.0. l.t [(1,2) 2.273 : 1.38] 7.82 
3.0.2.S [(1,2) 2.179 : 1.66] [(2,3) 2.840 : 0.87] 7.75 
3.0.4.t [(1,2) 2.247 : 1.53] [(2,3) 3.948 : 0.56] 6.47 

4.0. l.s [(1,2) 2.397 : 1.03] [(1,3) 2.316 : 1.07] 12.36 
[(3,4) 4.375 : 0.42] 

4.0.2.t [(1,2) 2.529 : 0.99] [(1,3) 2.274 ; : 1.10] 11.69 
[(3,4) 3.782 : 0.54] 

4.0.3.t [(1,2) 3.013 : 0.68] [(1,3) 2.277 : ; 1.13] 11.64 
4.0.5.t [(1,2) 2.256 : 1.16] [(2,3) 2.885 : : 0.62] 10.23 
4.0.7.S [(1,2) 2.498 : 0.88] 9.94 

5.0. l.s [(1,2) 3.047 : 0.59] [(1,3) 2.304 ; 0.94] 16.50 
[(3,4) 2.976 : 0.55] 

5.0.2.S [(1,2) 2.245 : 1.37] [(2,3) 2.318 : 0.91] 15.47 
[(2,4) 2.302 : : 0.93] [(1,3) 2.394 : 0.83] 

6.0. l.s [(1,2) 2.333 : : 0.80] [(2,5) 2.376 : 0.72] 20.72 
[(2,4) 2.390 : : 0.66] [(4,5) 2.549 : 0.60] 
[(2,3) 2.680 ; : 0.61] [(1,5) 2.950 : 0.35] 
[(1,4) 3.889 : : 0.40] [(5,6) 3.871 : 0.40] 

6.0.2.S [(1,2) 2.677 ; : 0.61] [(1,3) 2.347 : 0.78] 20.69 
[(1,5) 2.391 : : 0.67] [(3,5) 2.712 : 0.46] 
[(5,6) 2.489 : : 0.66] [(3,4) 3.092 : 0.31] 
[(3,6) 3.879 : 0.40] 

7.0. l.s [(1,2) 2.514 : 0.64] [(1,3) 2.461 : 0.58] 24.91 
[(3,4) 2.488 : 0.58] [(3,6) 4.025 : 0.23] 

7.0.2.S [(1,2) 2.500 : 0.53] [(1,5) 2.602 : 0.56] 24.31 
[(2,3) 2.495 : 0.56] [(4,5) 2.333 : 0.86] 
[(5,6) 4.155 : 0.12] [(2,7) 3.977 : 0.23] 
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Table I: (continued) 

8.0.1.S [(1,2)2.478:0.54] [(1,7) 2.272 : 0.93] 28.01 
[(1,5) 2.401: 0.69] [(1,4) 2.798 : 0.31] 
[(1,8) 3.848 : 0.10] [(2,7) 2.457 : 0.71] 
[(2,5) 2.772 : 0.40] [(2,6) 3.998 : 0.22] 
[(2,8) 4.245 : 0.10] [(2,3) 2.882 : 0.34] 
[(7,8) 5.667 : 0.23] 

Critical points with one or more imaginary frequencies 

3.2.3.S [(1,2) 2.182 : 1.78] [(2,3) 4.364 : 0.70] 7.26 

4.1.4.t [(1,2) 2.138 : 1.13] [(1,3) 3.278 : 0.54] 10.93 
4.2.6.t [(1,2) 2.164 : 1.42] [(1,3) 2.187 : 1.72] 9.90 

[(1,4) 4.350 : 0.29] [(3,4) 6.538 : 0.24] 

5.1.3.S [(1,2) 2.272 : 0.98] [(1,5) 2.516 : 0.70] 15.18 
[(1,3) 3.213 : : 0.61] 

5.4.4.t [(1,2) 2.316 : : 1.10] [(1,3) 3.748 :0.44] 13.09 
5.3.5.S [(1,2) 2.221 : : 1.06] [(1,3) 3.626 : 0.54] 11.14 

6.2.3.S [(1,2) 2.739 : ; 0.46] [(1,5) 2.361 : 0.73] 20.69 
[(5,6) 2.701 : : 0.61] [(1,3) 3.875 : : 0.41] 

6.2.4.t [(1,2) 2.447 : 0.69] [(1,3) 3.461 : : 0.31] 19.99 
6.2.5.S [(1,2) 2.323 ; ; 0.88] [(1,6) 2.391 ; ; 0.88] 19.09 

[(1,4) 2.692 ; 0.60] [(1,5) 3.571 ; ;0.15] 
[(5,6) 5.285 : 0.22] 

7.2.3.S [(1,2) 2.362 : 0.82] [(1,7) 2.290 : 1.05] 22.17 
[(1,4) 2.463 : 0.47] [(2,3) 2.780 : 0.56] 
[(1,6) 3.270 : 0.36] [(1,5) 3.560 : 0.17] 
[(6,7) 2.238 : 1.44] [(2,5) 2.339 : 0.95] 
[(2,6) 4.150 : 0.09] [(4,7) 3.289 : 0.36] 
[(5,6) 5.739 : 0.18] 

8.1.2.S [(1,2) 2.497 : 0.62] [(1,6) 2.674 : 0.40] 27.63 
[(1,8) 2.548 : 0.62] [(1,5) 3.848 : 0.20] 
[(1,4) 4.154 : 0.14] [(2,3) 2.432 : 0.73] 
[(2,4) 2.318 : 0.86] [(2,6) 2.461 : 0.61] 
[(2,7) 3.460 : 0.11] [(2,8) 4.110 : 0.09] 
[(4,5) 2.539 : 0.63] [(4,8) 5.706 : 0.21] 

8.1.3.S [(1,2) 2.326 : 0.85] [(1,5) 2.348 : 0.86] 27.20 
[(1,3) 2.606 : 0.44] [(1,7) 4.014 : 0.12] 
[(3,4) 2.479 : 0.62] [(3,5) 2.320 : 0.93] 
[(3,6) 3.483 : 0.14] [(5,6) 2.719 ; 0.55] 
[(5,7) 5.306 : 0.13] [(5,8) 4.558 : 0.19] 
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Table I: (continued) 

8.2.4.S [(1,2) 2.388 :0.66] [(1,3) 2.668 :0.47] 25.78 
[(3,4) 2.386 : 0.71] [(3,5) 4.133 : 0.18] 
[(3,6) 4.772 : 0.13] 

8.4.5.S [(1,2) 2.339 :0.99] [(1,4) 3.600 :0.28] 25.12 
[(1,6) 3.806 : 0.07] [(1,5) 5.242 : 0.12] 
[(2,3) 2.605 : 0.58] [(2,6) 2.362 : 0.86] 
[(2,7) 3.516 : 0.06] 

® n.j.m.l means the following: n=number of atoms in the cluster; j=number of 
imaginary frequencies; m=stabihty rank of the structure found in this work; l=singlet 
or triplet state. 
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Table H; Harmonie frequencies and zero point energies for Si clusters.^ 

structure'' harmonie frequencies (cm"^) ZPE (kcal/mole) 

2.0.1.t 480 0.69 
2.0.2.t 549 0.78 

3.0.1.t 340,340, 508 1.70 
3.0.2.8 171,540,548 1.80 
3.0.4.t 55,414,513 1.40 
3.2.3.S 388, 663; 79i, 79i 1.50 

4.0. l.s 55,248,348,436, 464,495 2.93 
4.0.2.t 169, 303, 312,372,461,463 2.97 
4.0.3.t 179,202, 396,403,404,479 2.95 
4.1.4.t 190,393,393,433,464; 462i 2.68 
4.0.5.t 101, 103, 184,411,415,498 2.45 
4.2.6.t 16, 16,293,512,667; 34i, 34i 2.15 
4.0.7.S 185, 185,307,307,307,419 2.44 

5.0.1.S 178, 178, 232, 377, 377, 409, 440, 440, 476 4.44 
5.0.2.S 99, 150, 189, 215, 329, 367, 472, 516, 517 4.08 
5.1.3.S 250, 258, 262, 364, 423, 427, 453, 465; 295i 4.15 
5.4.4.t 355, 355, 355, 454, 454; 171i, 171i, 159i, 159i 2.82 
5.3.5.S 60, 60, 343, 534, 534, 534, 117i, 117i, 117i 2.95 

6.0. l.s 11, 67, 147, 260,309, 319,379,393, 5.22 
412, 445, 448, 463 

6.0.2.S 18,53, 146,261,312,318,378,400, 5.22 
405, 444, 455, 458 

6.2.3.S 150,237,302,326,389,411,411,449 5.12 
454, 454; 46i, 46i 

6.2.4.t 153, 153,165,359,362,374,374,384, 4.50 
384, 437; 484i, 484i 

6.2.5.S 231,248,248,270,368,368,369,409, 4.89 
413, 499; 165i, 165i 

7.0.1.S 171, 171,220, 220, 229,288, 288, 334, 6.50 
334, 337, 337, 356, 415, 415, 431 

7.0.2.S 123,123,154,203, 203,296,296,316, 6.60 
332, 332, 348, 425, 451, 509, 509 

7.2.3.S 84, 86, 177, 242, 273, 290, 328, 361, 381, 5.81 
429, 445, 476, 492; 127i, 47i 

8.0.1.S 57, 93, 142, 162, 218, 239, 255, 291, 293 
295, 308, 313, 335, 356, 387, 392, 511, 513 

7.38 
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Table H: (continued) 

8.1.2.S 114, 139, 146, 178, 226, 253, 269, 278, 283, 7.07 
291, 323, 331, 346, 395, 398, 477, 500; 231i 

8.1.3.S 132, 142, 176,185, 221, 234, 242, 274, 296, 7.53 
344, 365, 380, 392, 399, 485, 487, 515; 135i 

8.2.4.S 76, 97, 99, 106, 213, 213, 224, 225, 225, 6.08 
338, 348, 348, 400, 432, 457, 457; 265i, 265i 

8.4.5.S 35, 99, 180, 210, 263, 305, 318, 334, 347, 6.20 
415, 424, 435, 466, 511; 156i, 108i, 86i, 86i 

^ Computed using the VWN exchange-correlation potential. 
n.j.m.l means the following: n=number of atoms in the cluster; j=number of 

imaginary frequencies; m=stability rank of the structure found ia this work; l=singlet 
or triplet state. 
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Table HI: Total energies of Si clusters using the VWN and PW potentials. 

VWN energy PWA/WN energy 
structure^ (hartrees) (hartrees) 

1.0. l.t -3.746493 -3.807553 
1.0.2.q -3.600459 -3.614254 
2.0. l.t -7.638734 -7.748750 
2.0.2.t -7.639097 -7.746123 
3.0. l.t -11.566728 -11.712871 
3.0.2.S -11.565056 -11.710177 
3.2.3.S -11.538178 -11.691696 
3.0.4.t -11.505257 -11.662687 
4.0.1.S -15.505146 -15.688910 
4.0.2.t -15.479602 -15.664584 
4.0.3.t -15.475681 -15.662743 
4.1.4.t -15.445992 -15.636294 
4.0.5.t -15.421578 -15.610173 
4.2.6.t -15.400259 -15.597249 
4.0.7.S -15.416697 -15.599213 
5.0. l.s -19.432703 -19.651122 
5.0.2.S -19.388251 -19.611354 
5.1.3.S •19.400868 -19.616704 
5.4.4.t -19.286116 -19.523428 
5.3.5.S -19.229175 -19.450788 
6.0.1.S -23.363347 -23.614884 
6.0.2.S -23.362517 -23.613982 
6.2.3.S -23.362659 -23.613695 
6.2.4.t -23.331940 -23.587256 
6.2.5.S -23.293784 -23.554478 
7.0.1.S -27.294570 -27.578682 
7.0.2.S -27.269346 -27.556774 
7.2.3.S -27,178770 -27.476987 
8.0.1.8 -31.176692 -31.501601 
8.1.2.S -31.162292 -31.486930 
8.1.3.S -31.142333 -31.471816 
8.2.4.S -31.092494 -31.417071 
8.4.5.S -31.051242 -31.393575 

® n.j.m.l means the following: n=number of atoms in the cluster; j=number of imaginary 
frequencies; ni=stability rank of the structure found in this work; l=singlet or triplet state. 
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Table IV: Theoretical and experimental estimates of the binding energies (in eV) 
for the global minima of Si^, n = 2-8. The binding energies include the 
zero point energies. The equiUbrium structures® whose energies are 
reported below are as follows: 2.0. l.t; 3.0. l.t for the VWN calculations 
and 3.0.2.S for the MP4 calculations; 4.0.l.s; 5.0.1.S; 6.0.1.s; 7.0.1.s; and 
8.0.l.s. 

MP4^ VWN MP4^ VWN VWN PW/VWN 
n corr. corr.#l corr.#2 experiment 

2 2.60 3.94 3.12 3.18 3.20 3.62 
3 6.34 8.83 7.61 7.69 7.60 7.82 
4 10.57 14.00 12.68 12.48 12.03 12.36 
5 13.74 18.86 16.49 16.96 16.40 16.50 
6 18.02 23.84 21.62 21.56 20.89 20.72 
7 22.16 28.81 26.59 26.15 25.37 24.91 
8 24.31 32.46 29.17 29.42 28.52 28.01 

® n.j.m.l means the following: n=number of atoms in the cluster; j=number of 
imaginary frequencies; m=stability rank of the structure found in this work; l=singlet 
or triplet state. 
^ Refs. 2 and 3. 

Ref. 50. 
^ Ref. 52. 



www.manaraa.com

Table V: PW/VWN binding energy (BE), promotion energy (PE), intrinsic binding 
energy (IBE) and the ratio PE^BE for silicon clusters. 

structure® BE(eV) PE(eV) IBE(eV) PE/ffiE 

2.0.1.t 3.62 0.35 3.97 0.09 
2.0.2.t 3.55 1.33 4.88 0.27 
3.0.1.t 7.82 2.20 10.02 0.22 
3.0.2.S 7.75 1.95 9.70 0.20 
3.2.3.S 7.26 2.32 9.58 0.24 
3.0.4.t 6.47 2.04 8.51 0.24 
4.0. l.s 12.36 3.09 15.47 0.20 
4.0.2.t 11.69 4.23 15.92 0.27 
4.0.3.t 11.64 3.58 15.22 0.24 
4.1.4.t 10.93 3.42 13.35 0.24 
4.0.5.t 10.23 2.36 12.59 0.19 
4.2.6.t 9.90 3.58 13.48 0.27 
4.0.7.S 9.94 1.30 11,24 0.12 
5.0.1.S 16.50 4.93 21.43 0.23 
5.0.2.S 15.47 5.66 21.13 0.27 
5.1.3.S 15.57 5.54 21.11 0.26 
5.4.4.t 13.09 5.45 18.54 0.29 
5.3.5.S 11.14 3.87 15.01 0.26 
6.0. l.s 20.72 5.33 26.05 0.20 
6.0.2.S 20.69 5.37 26.06 0.21 
6.2.3.S 20.69 5.13 25.82 0.20 
6.2.4.t 19.99 5.97 25.96 0.23 
6.2.5.S 19.09 6.35 25.44 0.25 
7.0.1.S 24.91 6.43 31.34 0.21 
7.0.2.S 24.31 7.37 31.68 0.23 
7.2.3.S 22.17 9.04 31.21 0.29 
8.0.1.S 28.01 8.58 36.59 0.23 
8.1.2.S 27.63 9.12 36.75 0.25 
8.1.3.S 27.20 9.93 37.13 0.27 
8.2.4.S 25.78 7.08 32.86 0.22 
8.4.5.S 25.12 . 9.12 34.24 0.27 

^ n.j.m.l means the following: n=number of atoms in the cluster; j=number of 
imaginary frequencies; m=stability rank of the structure found in this work; l=singlet 
or triplet state. 
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Table VI: The PE/IBE ratio, average coordination number and HOMO-LUMO gap 
of the Si clusters. 

structure® PE/DBE^ <x> HOMO-LUMO gap ( e V f  

2.0. l.t 0.09 1.00 1.17 
2.0.2.t 0.27 1.00 1.19 
3.0. Lt 0.22 2.00 1.70 
3.0.2.S 0.20 1.88 L04 
3.2.3.S 0.24 1.79 1.36 
3.0.4.t 0.24 1.76 0.46 
4.0. Ls 0.20 2.83 1.05 
4.0.2.t 0.27 2.88 1.17 
4.0.3.t 0.24 2.87 1.85 
4.1.4.t 0.24 2.76 L14 
4.0.5.t 0.19 2.79 0.81 
4.2.6.t 0.26 1.98 1.40 
4.0.7.S 0.12 3.00 0.40 
5.0. Ls 0.23 3.80 1.94 
5.0.2.S 0.27 3.21 0.73 
5.1.3.S 0.26 3.87 0.71 
5.4.4.t 0.29 3.37 0.60 
5.3.5.S 0.26 3.68 0.72 
6.0. Ls 0.20 4.73 2.09 
6.0.2.S 0.20 4.72 2.13 
6.2.3.S 0.19 4.79 2.07 
6.2.4.t 0.24 4.69 L12 
6.2.5.S 0.23 3.89 0.57 
7.0. l.s 0.21 5.52 2.12 
7.0.2.S 0.25 5.06 1.76 
7.2.3.S 0.29 3.98 0.45 
8.0. Ls 0.23 5.31 1.45 
8.1.2.S 0.25 5.18 0.57 
8.1.3.S 0.27 4.73 0.95 
8.2.4.S 0.22 5.68 0.13 
8.4.5.S 0.27 3.78 0.21 

® means the following: n=number of atoms in the cluster; j=number of imaginary 
frequencies; m=stability rank of the structure found in this work; l=singlet or triplet state. 
^ PW/VWN values. 
® For triplet states we give the average over the two spin manifolds. The HOMO-LUMO gap 
is reported for the VWN exchange-correlation potential. 
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3.0.2.s, 3.0.4.t 

G) 

3 . 2 . 3  .  s  

Fig. 1: The Sig clusters studied. See text for the cluster labelling convention. 
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4.0.1.s, 4.0.2. t 4.0.3.C 4.0.5.C 4.0.7.s 

0 ©—©—©—© 
4.1.4.L 4 . 2 . 6 . c 

Fig. 2: The 8i^ clusters studied. See text for the cluster labelling convention. 
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5 .1. 3 . s 5.4.4.1: 5 . 3 . 5 . s 

Fig. 3: The Sig clusters studied. See text for the cluster labelling convention. 
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6 . 0 .1. s 6 . 0 .2 . s 

6 . 2 . 3 . s 5 . 2 . 4 . t 6 . 2 . 5 . s 

Fig. 4: The Sig clusters studied. See text for the cluster labelling convention. 
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7.0.1.s 7.0.2.s 

7.2.3.. 
Fig. 5: The S17 clusters studied. See text for the cluster labelling convention. 
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8.0.1.s 8 .1. 2 . s 05 05 

8.1-3.s 8.2.4.s 8.4.5.s 

Fig. 6: The Sig clusters studied. See text for the cluster labelling convention. 
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Fig. 7: a) The disproportionation energy as a function of the number of atoms in the 
cluster. This is one measure of relative cluster stability. The line denotes 
the zero energy, b) The incremental binding energy as a function of the 
number of atoms in the cluster. This is another measure of cluster stability. 
The X's represent the experimental values, while the line indicates the bulk 
cohesive energy. 



www.manaraa.com

68 

5.0 

43 

4.0 

I g 33 

1 
3.0 

23 • .IT 

2.0 
-0.2 

u L _l L J L. 

0.0 0.2 0.4 0.6 

(2.0-8) atomic population 
0.8 

Fig. 8: The valency of the silicon atoms as a function of the quantity (2.0 - s-atomic 
population). This is the hybridization of the silicon atoms in the silicon 
clusters studied. 
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Fig. 9: The bond order of the individual Si atoms in the clusters as a function of the 
length of the bond. 
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ABSTRACT 

We have studied the relaxation of some metal surfaces using a corrected 

effective medium (GEM) theory. GEM is a non self-consistent, density functional 

technique. The interaction energy is calculated as a sum of three components: the 

embedding energy of an atom in jelhum, the interatomic coulomb energy, and the 

kinetic-exchange-correlation energy. A new theoretical procedure has been developed 

to determine the embedding energies via linear muffin tin orbital calculations. This 

refinement of the theory is tested for surface energies and structures of some relaxed 

Al, Ni, Gu, Rh, Pd, and Ag surfaces. Gomparisons are made to the embedded atom 

method, the effective medium technique, and a simpler version of GEM that is used 

in molecular dynamics and Monte Carlo simulations. We present an iu-depth 

analysis of the results, and discuss the physical basis of surface relaxation within 

GEM. Finally, we address the Umitations inherent in calculations of metal surface 

relaxation. 
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INTRODUCTION 

The phenomena of reconstruction and relaxation of metal surfaces has 

received considerable attention. Considerable experimental data indicate multilayer 

oscillatory relaxation of surfaces^. In addition, theoretical results '̂̂ ® support these 

findings. 

The most rigorous theoretical calculations have involved the self-consistent 

density functional method^"^^. These have been used to determine the structure of 

metal surfaces but only for a few systems due to the large computational expense 

involved. More extensive investigations have utilized simpler theoretical procedures 

such as the embedded atom method the effective medium (EM) theory^®' 

and a corrected effective medium (CEM) method^®"^®. 

Like other effective medium type methods, CEM theory starts by modehng the 

interaction of any one atom with aU the other atoms in the system by that atom 

interacting with jelhum (an infinite homogeneous electron gas with a uniform 

compensating positive density). This is repeated for all atoms in the system, and the 

total of all these atom-jellium interactions forms the zero'th order representation. 

This process simplifies the N-body problem to a set of N one-body problems. 

The interaction energy for the atom-in-jellium system, called the embedding 

energy of the atom, is a function of the electron density of the jellium for any 

particular type of atom. Since this embedding energy is a major component of the 

system interaction energy,it is important to determine accurate embedding 

energies. 
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In previous work^®'̂ '̂̂ ^, these embedding functions have been constructed 

from experimental data on homonuclear diatomic and bulk binding energy curves. 

The resulting semi-empirical embedding functions must be interpolated for use in the 

density region of importance for surface properties. In this paper we present a new 

purely theoretical method to determine these embedding energies. In particular, we 

use the linear muffin tin orbital (LMTO) technique, an SCF-LD method developed by 

Skriver^®, to determine cohesive energy curves over a wide range of lattice constants, 

and then use these results to construct the embedding functions. We test this 

refinement of the CEM theory for surface energies and structures of some relaxed 

simple and transition FCC metal surfaces. 

We have also improved the numerical accuracy and computational efficiency of 

the CEM calculations. Thus, many more surfaces are investigated in the present 

work. 

An approximation to the CEM method, with acronym MD/MC-CEM, has been 

developed to allow for efficient use of the method in molecular dynamics and monte-

carlo simulations^^. The MD/MC-CEM theory is about 10^-10^ times faster to 

evaluate than the full CEM theory, being comparable in speed and formal structure 

to the EAM method. Thus, we have also tested the adequacy of the MD/MC-CEM 

values for surface energies and relaxations using embedding functions determined 

from the LMTO technique. 

We assess our attempts at improving CEM and MD/MC-CEM theories, and 

suggest additional improvements that might produce even better results. Some 

comparison is also made to the EAM and EM methods. Finally, we present an in-
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depth analysis of our results, discussing the physical basis of surface relaxation 

within OEM and addressing the limitations inherent in calculations of the relaxation 

of metal surfaces. 

In an appendix, we provide details of the LMTO calculations on the cohesive 

energies of the metals Al, Ni, Cu, Rh, Pd, Ag, Pt and Au. These results span a large 

range of lattice constants, and thus can be useful in any situation requiring cohesive 

energies for very compressed and/or expanded lattices. 
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THEORY 

We present a brief overview of the CEM theory here, focusing on the 

particular features needed to understand the bulk and surface energy applications. 

Other details can be found in Refs. 19-23. 

Assuming that the total system electron density can be approximated as the 

superposition of atomic electron densities, one can show that the CEM cohesive 

energy is given by the expression: 

iE^(Aj) = iE,(A  ̂4. I EV.(bj) + 40 ,̂ (1) 

where Aj, labels any equivalent (bulk) atom in the system, and is referred to as the 

focus atom. AEj(Ajj;nj3) is the energy of embedding this atom into jellium of density 

n^,. Vg(bj) is the sum of electron-electron, electron-nuclear and nuclear-nuclear 

coulomb interactions between atoms A^ and Aj. is an exphcit correction for 

the kinetic-exchange-correlation energy difference between the inhomogeneous 

electron gas in the real bulk system and the effective atom-jellium system.^® It 

involves an integration over the Wigner-Seitz cell of atom Aj,. 

Minimizing with respect to the jellium densities yields the expression 

for the jellium density: 
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n,, = ^ E /n(î - - Rj) (ff (2) 
^4, j't 

Here, n("r - "^) is the unpolarized atomic electron density distribution (from Hartree-

Fock (HP) calculations); Zj and "Éj are the atomic number and nuclear position, 

respectively, of atom A^; "r is the electron density at any point in space. 

It is worthwhile to emphasize that the only unknown part of the CEM energy 

expression is the embedding function. Once this is specified, the theory can be used 

to predict the interaction energies for a system in any geometry, not just for the 3D 

periodic geometry. The relevant formulas are given in Refs. 19-23. 

To obtain these embedding functions, we have developed a theoretical 

procedure based upon use of LMTO calculated cohesive energies^®. The details of the 

LMTO generation of these values is provided in the appendix. Assuming that the 

cohesive energy is known, we rewrite Eq. (1) as 

~ ~ % ^Vg(bj) -
Z j#1; 

which defines the LMTO generated embedding energy. Calculations of 

''^coh.LMTO^'^b^ various lattice constants yields various njj since 

the jellium density varies with atomic separation via Eq. (2). The subscript 'LMTO' 

simply indicates that the embedding functions are generated from LMTO calculations 

of the cohesive energy. 

Before showing results of this procedure, we emphasize the need for calculated 

values of Experimental data on the variation of AE^^jj with lattice constant is 
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severely limited for two reasons: 1/ contractions of more than a few percent require 

extremely high pressure; 2/ stretching more than a few percent leads to fracture. 

Thus, it is only through calculations that significant variations of with lattice 

constant can be determined. In the present work, lattice constants were varied from 

10% contractions to 30% expansions. The severity of these conditions is easily 

understood by noting that for Ni a 10% contraction decreases from 4.44 eV to 

3.36 Ev while a 30% expansion decreases it to 1.97 eV. For comparison, the binding 

energy of a surface atom on Ni(lll) is estimated to be 3.82 eV. Hence, one would 

form a surface well before any such 30% expansion could be reached. 

In Fig. 1, we compare the present LMTO generated embedding function for 

the Cu atom, AE2,^Q(Cu;n), with that determined in previous work using a different 

procedure^^. Both embedding functions have the same shape. The essential 

difference occurs in the density region between slight expansions of the bulk and the 

diatomic equilibrium position. The previous semi-empirical procedure requires an 

interpolation over a large density range while the present LMTO embedding 

functions are determined directly throughout this region. To see the importance of 

this, we have indicated the jellium density calculated from Eq. (2) for an atom in the 

first layer of the perfectly terminated Cu(lll), Cu(lOO), Cu(llO), Cu(331), Cu(311), 

and Cu(210) surfaces. The densities at these points correspond to approximately a 

10-15% expansion of the lattice from the bulk lattice constant, with the more closed-

packed faces corresponding to the smaller expansions (high densities) and the open 

faces corresponding to the larger expansions (low densities). The LMTO embedding 

functions have points throughout the surface region while the semi-empirical 
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embedding functions only have points in the high density end of the surface region. 

The only extrapolation in the LMTO embedding functions is between the lowest 

density point and the zero density point. Since the density of the region of 

extrapolation is so small, this has no affect on the energies of the surface or bulk 

region. 

The difference between the two embedding functions is not the same for all 

atoms. It is larger for the Cu atom than for any of the other atoms studied. The 

disparity between the embedding energies is 0.150 eV for an atom on the perfectly 

terminated Cu(110) surface. The deviation between the two embedding functions is 

smallest for the 4d transition metals, Rh, Pd, and Ag. In Fig. 2, we compare the 

LMTO generated embedding function for the Pd atom, AELj^Q(Pd;n), with the 

embedding function determined previously. We have indicated the jellium density 

calculated from Eq. (2) for an atom in the first layer of the perfectly terminated 

Pd(lll), Pd(100), and Pd(110) surfaces. The difference between the two curves is 

only 0.004 eV for an atom on the ideal Pd(110) surface. 

The GEM theory has a computationally intensive part, namely the three 

dimensional multicenter integration needed to evaluate AG. Thus, a still simpler 

theory, with acronym MD/MC-CEM, has been developed in Ref. 22, to. which the last 

term in Eq. (1) is approximated as a function of jellium density. This yields 

AE^(Aj) = AF,(Aj;nj) + 1 EV,(ij) (4) 

where AFj is an effective embedding energy within the more approximate theory. 
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This MD/MC-CEM theory is not as general as the original CEM theory since the AG 

term is not simply a function of the jellium density. 

The LMTO cohesive energy variation with lattice constant can be used 

analogously to find 

~ ^^0ia,LMro(^b) ~ % ^Vg(bj) (5) 
i j#b 

We compare the fianctions AEtj^frn(Cu;n) and AFlj^q(Cupi) in Fig. 3. While the 

MD/MC-CEM embedding function is steeper than the CEM embedding function, the 

qualitative behavior of both curves is essentially the same. All metals exhibit similar 

characteristics to Cu in this regard. 

With these newly constructed embedding functions using a purely theoretical 

method and relying on very little extrapolation of data, we are now in a good position 

to test the CEM and MD/MC-CEM theories. The surface energies and relaxations 

are used in this article for that purpose. To calculate these, it was shown^® that for 

infinitely periodic, homogeneous atomic surfaces the cohesive energy of an atom in a 

particular layer (A,) can be written as 

AE;^ = ^ + AG;^ (6) 
2 

The difference from Eq, (1) occurs in the jellium densities and coulomb integrals 

which depend upon the number of neighbors, and in the AG;^^ which now involves an 

integration over a generalization of the Wigner-Seitz cell. The analogous equation 

for MD/MC-CEM involves simply dropping the AG^ term and replacing AEj(A)^^;n)^) 
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with AFj(A;^;n^). Given the energies of any equivalent atom in a layer, the surface 

energies are then determined from 

- AEJ 
o = —— 

surface unit cell area 

where A,=l is the surface layer and as AE^ converges to AEy. To determine the 

extent of relaxation, we minimize Eq. (7) with respect to the layer distance spacings. 

In-plane reconstruction was not considered in these calculations. 
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RESULTS 

In table I we present the surface energies of some relaxed surfaces calculated 

with the LMTO embedding functions. The systems under study are most of the 

simple and transition FCC metal surfaces that do not reconstruct. 

First, we must explain the notation in table I (and many of the other tables). 

Many of the differences in surface energies between the relaxed and unrelaxed 

surfaces are quite small, with the largest being on the order of 0.1 J/m^ and the 

smallest being on the order of 0.001 J/m^. However, the limit to the numerical 

accuracy of the CEM method is about 0.001-0.003 J/m^, depending on the area of the 

specific unit cell. This intrinsic accuracy arises from numerical integration in the 

AG^ and the interpolation of the embedding energy. When the relaxation energy 

differences are smaller than this limit, the resulting structure is uncertain. Only the 

Ag(lll) surface falls into this category with the CEM theory. More surfaces 

calculated with MD/MC-CEM are uncertain, however, including Ni(lOO), Rh(lOO), 

Pd(100), Ag(100), Rh(lll), Pd(lll), and Ag(lll). The relaxed surface structures that 

are uncertain are distinguished by square brackets in the tables. For consistency in 

identifying these surfaces, we have also placed square brackets around the analogous 

surface energies although these surface energies are not uncertain, just essentially 

unchanged between the relaxed and perfectly terminated surface. 

The calculated surface energies, a, for the low-index faces follow the ordering 

of o(1,1,1) < G( 1,0,0) < o(3,3,l)) < o(l,l,0)=o(3,l,l) < 0(2,1,0). This progression is 

correctly described by the number of missing nearest neighbors (MNN) for each 
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surface. Assuming that all NN bonds are of equal strength at the surface and in the 

bulk, such a dependence on MNN leads to the formula 

ajijjc) _MNN(iJJ:)area(W) (8) 
a(l,l,l) 3 areaiijjc) 

where (i j,k) specifies the Miller indices and area(i j,k) is the surface unit cell area. 

Eq. (8) yields the following numerical results. a(l,l,l) : G( 1,0,0) : o(3,3,l) : a(l,l,0) : 

c(3,l,l) : 0(2,1,0) = 1: 1.15 :1.19 :1.22 :1.22 :1.29. Not only is the ordering perfect 

but the prediction that a(l,l,0)=o(3,l,l) holds to high accuracy. The latter is 

especially surprising since MNN(1,1,0)=6 while MNN(3,1,1,)=7. However, the values 

of the surface energy do not correspond quantitatively to the MNN/area formula. 

Instead, this simple dependence upon MNN/area overestimates the surface energy by 

roughly a factor of 2. This makes sense, since once the bonds to the MNN are 

broken, the bonds to the remaining neighbors will strengthen, thus lowering the 

energy of surface formation. 

Some surface firee energies found from experimentally measured quantities of 

the polycrystalhne surface of each metal are also listed in table I. These surface free 

energies have been determined at room temperature^® and at the metal's melting 

temperature^®'^®. It is necessary to extrapolate the experimental values to 0 K for 

comparison to our surface energies. This leads to considerable uncertainties since 

there are quite large discrepancies between the two sets of surface free energies 
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found at the metal's melting temperature. To obtain surface energies, we plotted 

surface free energy versus temperature and extrapolated linearly to zero Kelvin. 

Apparently, CEM and MD/MC-CEM underestimate slightly the surface energies 

consistently for aU the metals. The predicted values are quite good. By comparison, 

the related EAM method consistently underestimates the values of o(i j,k) by up to 

50%^^'^®. This is discussed more below. 

For a comparison of the CEM and MD/MC-CEM surface energies with those 

calculated using simple two-body potentials and the very common EAM method^^'^®, 

we considered Cu with the results shown in table II. The two parameters in the 

Lennard-Jones (12,6) potential were chosen to duplicate the lattice constant and 

cohesive energy of Cu, while the three parameters in the Morse potential were 

chosen to also duplicate the Debye frequency. The surface energies found with the 

Lennard-Jones (12,6) potential are gross overestimates but at least are correctly 

ordered with surface face. By contrast, the results with the Morse potential indicate 

that the (100) surface is more stable than the (111) surface. Although it is perhaps 

surprising that the more flexible Morse potential is worse, one should keep in mind 

that the use of a two-body potential to describe metallic bonding is not even 

qualitatively correct, and thus which potential is better turns out to be a moot point. 

The EAM method is considerably better than either of the two-body potentials for Cu, 

but sometimes underestimates o by about a factor of two which is about as much as 

the two-body potentials overestimate it. The interested reader is referred to Refs. 23 

and 30 for more extensive comparisons among the EAM, EM, CEM, MD/MC-CEM 

and two-body potentials. The general conclusion from these studies and table II is 
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that both the CEM and MD/MC-CEM methods do a good job of finding reliable 

surface energies. 

Now, we turn to the prediction of surface geometries, in particular the change 

in the interlayer spacing. A recent, comprehensive listing of experimental relaxation 

data can be found in Ref. 1. For many surfaces, there is so much relaxation data 

available (with many disagreements) that we had to make some decisions about what 

to include. One major criterion was used: when any experiment found significant 

multilayer relaxation, a particular set of experimental data was retained only if 

multiple layer relaxation was allowed in the analysis. Within this restriction, we 

have referenced the most recent results when the number of experiments was still 

too large. In all cases, we try to present a collection of data that is internally 

consistent at least with respect to qualitative behavior. 

The CEM and MD/MC-CEM results are compared to experimental data and to 

other effective medium type values in tables III-Vl. Focus on the A1 system in table 

III first. The CEM values describe the qualitative features of the relaxation of the 

first layer of most of the surfaces studied, especially the systematic variation with 

surface. In contrast to the behavior of surface energies, the (110) and (311) surfaces 

do not contract equally. ïïie larger contraction of the latter indicates that the 

increase in MNN is more important than the increase in surface area. In addition, 

the agreement between CEM and experimental values for Ad^g (%) is within 3-4% for 

the surfaces with significant contractions. Nevertheless, there are some 

discrepancies, especially the CEM prediction of a small contraction of the top layer in 

Al(lll) and Al(lOO). This 3-4% overestimation of the contraction is consistent 
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throughout all of the A1 surfaces, but is just more striking for the low index faces 

which show negligible contractions or even an expansion experimentally. The second 

discrepancy involves the underestimation of the second layer expansion. 

For the Ni system in table TV, CEM again describes the qualitative features of 

the relaxation of the first layer of most of the surfaces studied. Similar 

overestimates of 3-4% for Ad^g (%) can be seen as well as the underestimate of Adgg 

(%). 

For the Cu system in table V, CEM again describes the qualitative features of 

the first layer relaxation except for the small relaxation of the (311) surface. The 

much smaller value of Ad^g (%) for Cu(311) than Ni(311) is quite surprising given the 

very similar results for the (110) face. One might speculate that a small in-plane 

reconstruction occurs in the Cu(311) surface which eliminates the driving force for a 

large contraction. 

For the Rh, Pd and Ag systems in table VI, CEM is much more quantitatively 

accurate, with the glaring exceptions of the Rh(100) and Pd(100) surfaces. Possible 

reasons for this disagreement are discussed in the next section. 

Let us summarize the comparisons in tables III-VI. We find larger first layer 

contractions than experiment for most surfaces, especially the low-index planes of Ni 

and Cu. We also find that the first layer of the Al(lll), Pd(100) and Rh(lOO) 

surfaces contracts while the experiments find expansions. In addition, in every case 

where experiments find relaxation past the second layer, CEM underestimates the 

extent of the relaxation of the second layer. Often experiments find relaxation of the 

third and fourth layers as well, while the CEM method finds negligible relaxation 
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past the second layer. 

Comparison of CEM and other effective medium type methods indicates some 

interesting effects. The MD/MC-CEM results show the same general trends as those 

of CEM but find consistently less surface relaxation. The best agreement between 

the two is found for A1 because AG in Eq. (6) is less important for this nearly fi-ee 

electron metal than for the transition metals. While MD/MC-CEM values are 

generally in better quantitative agreement with experiment than CEM, this is merely 

fortuitous as discussed in the next section of this paper. 

EM relaxation results, which are only available for Al, show good agreement 

with CEM and excellent agreement with MD/MC-CEM values, respectively. 

Accordingly, EM does not find a first layer expansion of the Al(lll) surface. 

Similarly, EAM does not find first layer expansions of the Al(lll), Pd(100) 

and Rh(lOO) surfaces, in agreement with CEM and MD/MC-CEM but in 

disagreement with experiment. Furthermore, the EAM generally finds greater 

relaxation of the second layer than CEM but does not usually agree in the magnitude 

of relaxation reported by experiment. The EAM predictions are rather good for Ni 

and Cu, and clearly better than CEM for Cu. In contrast, the EAM results for Pd are 

much worse than for the Ni system, and clearly inferior to the CEM ones. The EAM 

shows excellent agreement with CEM for Ag, 

To provide a further point of reference, note that both the LJ and Morse 

potentials predict expansions for all the low-index Cu surfaces in table II, with the 

Cu(llO) surface having the largest expansion. This is blatantly incorrect and arises 

because the U and Morse potentials have minima at 2.62 Â and 2.87 Â, respectively. 



www.manaraa.com

At a Cu-Cu separation equal to its nearest neighbor distance of 2.55 Â both 

potentials are slightly contracted inside the two-body minimum. Thus, at the 

surface, the atoms in the first surface layer expand to larger separations firom the 

second layer atoms. Since the Morse potential equilibrium distance is significantly 

larger than that of the U potential, larger first layer expansions are found for the 

former. In addition, the universality of the U potential implies that all metals 

modeled by this two-body potential will be predicted to expand at the surface. One 

can thus conclude that simple two-body potentials cannot even describe metal 

surfaces qualitatively. 

The fact that many of the experimental relaxation results were obtained at 

temperatures between =90K and room temperature prompted us to study the effects 

of temperature on the relaxation of the first layer of the low-index Cu surfaces. This 

was done using molecular dynamics to initialize the surface at the desired 

temperature, calculating energies and forces via the MD/MC-CEM theory. In all 

cases, warming the surface led to a negUgible decrease in Ad22 (%) since the surface 

and bulk expanded by essentially equal amounts. This agrees with some 

experiments that have examined the temperature dependence of metal surface 

relaxation®^'®®. 

Lastly, we compare the surface energies and relaxations calculated using two 

different embedding functions: the present LMTO based one, AE]^^Q(Aj;nj), and the 

previous one developed using experimental cohesive energies and diatomic binding 

curves, AEQ(Aj;nj). Tables I and VII show that the surface energies are about 5-10% 

smaller for Al, Ni and Cu using the latter type of embedding function. For Rh, Pd 
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and Ag, the surface energies are nearly unchanged. Many more changes in the 

surface energy are within the error limits for the calculation using AF0(Aj;n^), as 

indicated by the brackets in table VII, which make surface relaxation results less 

reliable. 

Table VIII compares the LMTO and semi-empirical relaxation data. There is 

good qualitative agreement between the two sets of results. We can be more 

quantitative by comparison to the experimental values. The A1 system is described 

better for the (111) and (100) faces by AEQ(Al;n), the (110) and (311) by 

and the (331) and (210) equally by either. The Ni system is described 

better for the (111), (100) and (110) faces by AEQ(Ni;n), and the (311) by 

AET ^o(Ni;n). The Cu system is described better for the (111), (100), (110) and (311) 

faces by AEq(Cupi). For all eight known results on the Rh, Pd and Ag systems both 

functions predict experimental values equally well. Hence, it is mainly the Cu 

system that would seem to indicate the new LMTO embedding functions do not 

describe the surface region as well as the previous semi-empirical values. However, 

one should note that not much relaxation is observed past the first layer for any of 

the surfaces studied using either embedding function. 

At this point there is no overwhelming reason to choose one embedding 

function over another for GEM. The relaxation results are roughly equivalent as 

described above, while the surface energies are slightly better with AElj^q- For 

MD/MC-CEM, another reason is that the number of surfaces where the change in 

surface energy with relaxation is within the error limits is decreased using the 

LMTO embedding function. In addition, due to a fortuitous accident that we discuss 
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below, the MD/MC-CEM results for the first layer agree with experiment quite 

respectably when the LMTO embedding functions are used. Thus, a realistic 

description of these surfaces in a molecular dynamics or monte-carlo simulation 

should use the LMTO embedding function. 
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DISCUSSION AND CONCLUSIONS 

From the results presented in the previous section, we conclude that all of the 

effective medium type methods compared here show good qualitative agreement with 

each other and conflict with experiment on some aspects of surface relaxation. This 

is an important point. If the experiments are correct, there are some inherent 

features of the effective medium type theory that is unable to reproduce some of the 

experimentally observed phenomena, namely expansions of the first layer of some 

close-packed surfaces and significant relaxation below the second layer. Also, the 

lack of consistency between the effective medium type predictions and the 

experimental values indicates some inherent failings. 

It is worthwhile to question the experimental results that indicate expansions 

of the first layer. In Ref 66 it was hypothesized that the presence of interstitial 

hydrogen or a possible difference in magnetic moment between the Pd(100) surface 

and bulk might be the cause of the experimentally observed expansion of the first 

layer of Pd(lOO). In addition, Feibelman et. al.^^ postulated that undetected 

adsorbed hydrogen is responsible for the experimental results for Rh(lOO), since their 

SCF-LD calculations find a 5.1% contraction, of the first layer of that surface. The 

ability of Pd to absorb H raises questions about the expansion of the Pd(100) surface, 

especially since the trend for increasing contraction in the order (111)^(100)-»(110) is 

not obeyed. Therefore, it should be kept in mind that the observed first layer 

expansions in many of the surfaces might be related to some experimental conditions 

that are not reproduced theoretically. On the other hand, recent DFT-LDA 
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calculations performed by Hennig et. al7® reproduce the unusual surface relaxation 

of Pd(100) and Rh(100). The unconventional behavior of these surfaces is theorized 

to result from a competition between charge-density smoothing and the 

bonding/antibonding character of the d-derived states. More work needs to be done 

to investigate this matter. Nevertheless, at this time, we believe that the Al(lll) 

experimental results describe the clean surface and these do indicate some error in 

the effective medium theories. 

For the Al(lll), Al(100) and Ni(llO) surfaces, we have analyzed the individual 

energy components in the CEM method as displayed in Figs. 4 and 5. These include 

the kinetic-exchange-correlation term (AG), the sum of the coulomb correction and 

the embedding energy, and the surface energy. These figures illustrate four 

significant features of surface relaxation. 

First, very small energy changes on the order of 0.01 J/m^ (0.0002 eV/bohr^) 

determine interlayer relaxation. Since all effective medium type theories are 

parameterized from bulk information (e.g. the LMTO calculated cohesive binding 

curve), considerable caution must be used in accepting the results of relaxation 

studies. 

Second, and related to the above small energy changes, the relaxation of the 

first layer is very sensitive to slight changes in the embedding energies. Fig. 5 

illustrates how the sum of the embedding and coulomb energies rises less sharply for 

the LMTO than covalent embedding functions. This is a direct reflection of the 

steeper AELj^Q(Ni;n) vs. n curve as compared to AEQ(Ni;n) vs. n. The faster rising 

variation in the latter results in a difference of nearly 0.1 J/m^ (0.002 eV/bohr^) when 
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the first layer is contracted by 13%, 

Third, the kinetic-exchange-correlation energy plays an active role in 

determining relaxation. Indeed, at large first layer contractions this term begins to 

dominate the surface energy for Al(lll) and Al(llO) in Fig, 4. 

Fourth, the qualitative difference in the relaxation of closed and open faces is 

caused by all the energy components. Fig, 4a shows that for the Al(lll) surface 

when the first layer expands, the sum of the coulomb and embedding energies 

increases due to the fact that the embedding energy decreases more slowly than the 

coulomb energy increases, AG decreases but not enough to lead to an expansion. 

Once the first layer starts to contract, however, the simi of the embedding and 

coulomb energies decreases while AG increases, leading to a small contraction. For 

the Aid 10) surface in Fig, 4b, AG increases more slowly with contraction and the 

sum of the embedding and coulomb energies decreases more quickly, leading to large 

contractions. 

The last point raises an important question: how can effective medium type 

theories that do not explicitly calculate the kinetic-exchange-correlation energy term, 

such as MD/MC-CEM and EAM, obtain accurate relaxation results? For the MD/MC-

CEM method, it is due to cancellation of errors. In particular, the AG term for a bulk 

atom is included in the CEM embedding energy to get the MD/MC-CEM effective 

embedding energy. This bulk AG value is larger than the actual AG term at the 

surface, thus incorrectly raising the embedding plus correction energy at the surface. 

Moreover, AFy j^p rises more sharply than AElj^q thus leads to smaller 

contractions in the MD/MC-CEM theory. The better agreement with experimental 
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values is simply fortuitous. Hence, finding agreement with experiment does not say 

anything about how inherently good the theory is. This is useful to know, since it 

allows us to explore the limitations of a good effective medium type technique. 

In general, it seems that effective medium type methods are poor tools to use 

to study surface relaxation phenomena since these depend on small energy changes. 

This causes great sensitivity in the method to any errors in the embedding functions, 

and even could lead to sensitivity to the use of additive atomic electron densities (as 

described later). On the other hand, effective medium type methods when properly 

formulated can be quite useful for finding surface energies for specific surfaces. This 

information is not available from experimental data which utilize polycrystalline 

samples^®'^®. These apparently contradictory statements arise because the 

magnitude of the embedding energy curve determines the surface energy while the 

variation (e.g. slope) in the embedding energy curve determines the surface 

relaxation. The latter is much more difficult to predict accurately and consistently. 

From the above, it is clear that extreme care must be used in determining the 

embedding curves. The LMTO embedding functions are preferable to the covalent 

ones because of the presence of data points throughout the surface region in the 

former and the significant extrapolation in the latter. Even better embedding 

functions could be made using a more exact method than LMTO for finding very 

reliable cohesive energy curves. 

As a final point, we should mention that in previous GEM relaxation 

calculations, reasonable second and third layer relaxations were predicted^®. The 

major difference between the previous and present calculations involves the atomic 
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electron densities. An even tempered gaussian basis^® is used to fit to the HF atomic 

electron density for computational speed. In Ref. 19, the tails of the gaussian 

densities were slightly larger and of longer range than the HF densities. Using a 

better fitting procedure and more basis functions, we improved the fit to the HF 

density for the present calculations. This new density produces the smaller second 

layer relaxations observed here. The previous fit unintentionally mimicked the 

delocahzation of electron density in the solid, and thus led to larger overlaps in Eq. 

(2) and an increased sensitivity of the second layer to the contraction of the first 

layer. We conclude that surface relaxation is too sensitive to the deviation of the 

electron density between surface and bulk atoms to allow for any method using 

simple superposition of electron densities to be accurate. In other words, electron 

density rearrangement must be included to predict surface relaxation but not surface 

energy. 
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APPENDIX 

We outline the LMTO method and show exactly how it was used to generate 

the cohesive energy curves. Briefly, the atomic charge densities are calculated using 

a Hartree-Fock-Dirac-Slater program by Desclaux which uses various local-density 

approximations.^® Canonical LMTO structure constants and some structure factors 

are calculated for the chosen lattice type, in this case FCC. Next, the electronic 

structure of the material is calculated by LMTO, and the state densities are found 

based on the LMTO energy bands. Finally, the self consistent solution of the local-

density one-electron Schrodinger equation is found through the canonical scaling 

principle, thus yielding the total energy of the system. The independently varied 

parameter in the calculations is the Wigner-Seitz radius of the lattice. 

The above procedure yields the total energy per atom as a function of the 

Wigner-Seitz radius. Because the LMTO method is inaccurate for isolated atoms, the 

cohesive energy was obtained from experimental data by shifting the minimum of the 

LMTO generated energy curve to match the experimental value. We have also forced 

the LMTO equilibrium lattice constant to agree exactly with the experimental value 

by simple subtraction of the difference from all LMTO calculated values. Since the 

raw LMTO value is within 1% of the experimental one for every system considered 

here, this is an insignificant shift. The raw LMTO results are thus shifted in energy 

and lattice constant to agree with the experimental data. No further transformation 

of the LMTO data is done. 

To increase the accessibiUty of the results to others, we have devised a 
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convenient Chebyshev representation of the cohesive energy variation which enables 

the reader to generate the cohesive energy for all lattice constants from 10% 

contraction to an infinite expansion. 

To see how this is done, assume the existence of the shifted LMTO data: {Sj, 

AEcoh(Si), i=l,...,Ngaic}. where Sj is the Wigner-Seitz radius, is the cohesive 

energy at the appropriate radius, and is the number of calculated values. 

These are represented in the formula: 

n 

^c6h(S)=E CkT^(-l ̂ 2exp[-a{V-V^}]) 
k=0 

where V (=47rS®/3) is the volume of the Wigner-Seitz cell, (=47cS^jj^®/3) is the 

volume of the smallest Wigner-Seitz cell, and Tj^ is the Chebyshev polynomial of 

order k. The relationship between the lattice constant and Wigner-Seitz radius for 

an FCC solid, 47cS^/3 = a^/4, can be used to transform the data in terms of the lattice 

constant. 

An iterative fitting procedure is used: 

1. specify the number of polynomials, N, and an initial value for a; 

2. determine the expansion coefficients, Cj^, by weighted linear least squares 

fitting to the set of LMTO data, {AE^^jj^CSj)}; the weights are Wj=l/AEgQ^(S^), 

which is midway between unweighted and relative least squares fitting; 

3. vary a and repeat step 2 until the sum of square residuals is minimized. 

This yields the best least squares fit for a given polynomial expansion. To determine 

the number of polynomials, we increase N until the sum of square residuals levels off" 
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and/or the fit represents the data points to within the estimated accuracy of the data, 

±0.001 eV. 

A sample result of the above procedure is shown in Fig. 6 for Ni. The use of 

N=5 leads to an extremely accurate representation. For convenience, all coefficients 

(including a), equilibrium constants and cohesive energies are listed in table IX for 

all the FCC metals for which LMTO embedding functions were constructed. 
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Table I; Relaxed surface energies, a (J/m^), calculated using the LMTO embedding 
functions. 

face A1 Ni Cu Rh Pd Ag Method 

111 1.20 2.08 1.51 2.37 1.63 [0.90] CEM 
0.93 2.53 1.76 [2.73] [1.89] [1.02] MD/MC-CEM 

100 1.30 2.24 1.64 2.52 1.74 0.95 CEM 
1.02 [2.70] 1.91 [2.88] [2.00] [1.10] MD/MC-CEM 

331 1.37 2.36 1.72 CEM 
1.08 2.89 2.04 - - - MD/MC-CEM 

110 1.38 2.38 1.75 2.71 1.87 1.04 CEM 
1.10 2.90 2.08 3.12 2.18 1.22 MD/MC-CEM 

311 1.38 2.39 1.75 CEM 
1.10 2.91 2.07 - - - MD/MC-CEM 

210 1.44 2.47 1.82 CEM 
1.15 3.01 2.17 - - - MD/MC-CEM 

1.09 2.36 1.93 2.83 2.04 1.30 Expt.^ 
0.94 1.77 1.58 2.12 1.38 1.05 Expt.^ 
1.14 2.38 1.79 2.66 2.00 1.25 Expt.° 

1.15 2.49 2.04 2.94 2.17 1.38 Expt.^ 

^ Experimental data on polycrystalline samples at 298K from Ref 28. 

^ Experimental data on polycrystalline samples at the metal's melting point from 
Ref 28. 

® Experimental data on polycrystalline samples at the metal's melting point from 
Ref 29. 

Experimental data extrapolated linearly to OK using 298K data from Ref. 28 and 
melting point data from Ref 28. 
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Table H: The percentage change in interlayer spacing and the relaxed surface 
energies for various interaction potentials. 

face Adi2 (%) Adgg (%) c(J/m^) Method [Réf.] 

Cu 111 -4.6 +0.5 1.51 CEM 
-1.9 0.0 1.76 MD/MC-CEM 
+1.2 0.0 3.25 LJ 
+4.8 +1.2 4.03 Morse 
-2.5 -0.0 1.18 EAM [14] 

Cu 100 -6.2 +0.5 1.63 CEM 
-2.6 -0.5 1.91 MD/MC-CEM 
+2.5 +0.5 3.39 U 
+9.8 +2.8 3.90 Morse 
-3.8 -0.5 1.37 EAM [14] 

Cu 110 -15.0 +1.4 1.75 CEM 
-7.8 +1.1 2.08 MD/MC-CEM 
+3.5 +1.0 3.57 LJ 

+14.7 +3.7 4.08 Morse 
-8.7 +1.6 1.51 EAM [14] 

1.93 Expt.^ 
1.58 Expt.^ 
1.79 Expt.® 

2.04 Expt.'^ 

® Experimental data on polycrystaUine samples at 298K from Ref. 28. 

^ Experimental data on polycrystaUine samples at the metal's melting point from 
Ref. 28. 

® Experimental data on polycrystaUine samples at the metal's melting point from 
Ref. 29. 

Experimental data extrapolated Hnearly to OK using 298K data from Ref. 28 and 
melting point data from Ref. 28. 
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Table HI: Percent relaxation of interlayer spacing for Al. 

face Ad^g ( % )  Adgg ( % )  Method [Réf.] 

111 -2.4 0.0 CEM^ 
-L8 0.0 MD/MC-CEM® 
-1 0 EM [16] 
-3.26 -1.70 EAM [14] 
+0.9±0.5 LEED^ [31] 
+1.7+0.3 +0.5±0.7 LEED [32] 
+2.2+1.3 LEED [33] 
+3±2 LEED [34] 

100 -3.2 0.0 GEM 
-2.3 0.0 MD/MC-CEM 
-3 0 EM [16] 
-4.90 •2.24 EAM [14] 
0 LEED [35], MEED [36] 

331 -14.5 •2.4 CEM 
-9.7 -1.9 MD/MC-CEM 
-11.7+2.3 -4.1+3.1 LEED [37] 

110 -10.0 +1.4 CEM 
-6.7 +0.5 MD/MC-CEM 
-7 +1 EM [16] 
-10.47 +3.64 EAM [14] 
-8.5+1.0 +5.5+1.1 LEED [38] 
-8.6±0.8 +5.0+1.1 LEED [39] 

311 -13.8 +2.4 CEM 
-9.1 +1.2 MD/MC-CEM 
-13.3+1.0 +8.8±1.5 LEED [40] 

210 -19.7 -1.0 CEM 
-13.8 -1.0 MD/MC-CEM 
-16+2 -1+3 LEED [41] 

^ The LMTO embedding function was used. 
^ Low energy electron diffraction. 
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Table IV: Percent relaxation of interlayer spacing for Ni. 

face Adi2 (%) Adgg (%) Method [Réf.] 

111 -4.1 +0.5 CEM® 
-1.2 0.0 MD/MC-CEM^ 
-1.85 -0.04 EAM [14] 
0.0 HEIS [42] 

100 -5.2 +0.5 CEM 
[-1.0 0.0] MD/MC-CEM 
-3.04 -0.35 EAM [14] 
-1±1 0±1 LEED [43] 
-3.2+0.5 BBS [44], RBS [45] 

331 -16.6 -0.5 CEM 
-7.9 -0.5 MD/MC-CEM 

110 -12.3 0.0 CEM 
-4.1 +0.5 MD/MC-CEM 
-7.01 +1.84 EAM [14] 
-4.8+1.7 +2.4±1.2 HEIS [46] 
-8.4±0.8 +3.1±1.0 LEED [47] 
-8.7±0.5 +3.0±0.6 LEED [48] 
-9.0±1.0 +3.5+1.5 MEIS [49] 
-9.8+1.8 +3.8±1.8 LEED [50] 

311 -15.5 +0.5 CEM 
-6.9 +1.8 MD/MC-CEM 

-15.9±1.0 +4.1±1.5 LEED [51] 

210 -19.9 -4.9 CEM 
-10.0 +0.5 MD/MC-CEM 

^ The LMTO embedding function was used. 
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Table V: Percent relaxation of interlayer spacing for Cu. 

face Adi2 (%) Adgg (%) Method [Réf.] 

111 -4.6 +0.5 CEM® 
-1.9 0.0 MD/MC-CEM^ 
-2.48 -0.04 EAM [14] 
-0.7+0.5 LEED [52] 

100 -6.2 +0.5 GEM 
-2.6 -0.5 MD/MC-CEM 
-3.79 -0.54 EAM [14] 
-1.10+0.40 +1.70±0.60 LEED [53] 
-2.1+1.7 +0.45+1.7 LEED,LEPD [54] 

331 -18.9 -5.7 GEM 
-11.9 -1.4 MD/MC-CEM 

110 -15.0 +1.4 GEM 
-7.8 +1.1 MD/MC-CEM 
-8.73 +1.56 EAM [14] 
-5.3±1.6 +3.3±1.6 HEIS [55] 
-6.7±2 +4.2±2 LEED [56] 
-7.5+1.5 +2.5+1.5 MEIS [57] 
-8.5±0.6 +2.3±0.8 LEED [58] 

-10.0 +1.90 LEED [59]^ 
-7.90 +2.40 LEED [59]^ 
-9.50 +2.60 LEED [59]^ 

311 -18.6 +1,1 GEM 
-11.0 +2,0 MD/MC-GEM 
-7.3 +3.7 LEED [60] 

210 -25.3 -4.7 GEM 
-17.5 0.0 MD/MC-GEM 

® The LMTO embedding function was used. 
^ Results of different R-factor analysis on the same set of LEED data. 
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Table VI: Percent relaxation of interlayer spacing for Rh, Pd and Ag. 

Atom face Ad^g (%) Adgg (%) Method [Réf.] 

Ill -2.3 0.0 GEM* 
[-1.0 0.0] MD/MC-CEM^ 
-0.7+0.8 LEED [61]'' 
-1.6+0.8 LEED [61]^ 

100 -3.2 0.0 GEM 
[0.0 0.0] MD/MC-GEM 

+0.5+2 LEED [62] 
+0.5+1.2 LEED [61]^ 
+1.0+0.9 LEED [61]^ 

110 -7.8 +0.5 GEM 
-4.2 +0.5 MD/MG-GEM 
-2.5+1.2 LEED [61]^ 
-3.3+1.5 LEED [61]^ 
-6.9+1.0 +1.9+1.0 LEED [63] 

111 -2.2 0.0 GEM 
[-0.5 0.0] MD/MG-GEM 
-3.17 +0.27 EAM [14] 
0.0 HEIS,LEED,AES[64] 

100 -2.8 0.0 GEM 
[0.0 0.0] MD/MG-GEM 
-4.94 +0.17 EAM [14] 

+2.5+2.5 LEED [65] 
+3 -1 LEED [66] 

110 -7.6 -0.5 GEM 
-3.6 +0.5 MD/MG-GEM 

-11.20 +2.49 EAM [14] 
-6±2 +1+2 LEED [67] 

111 [-1.2 +0.5] GEM 
[0.0 0.0] MD/MG-GEM 
-1.86 +0.13 EAM [14] 
0 LEED[68],HEIS [69] 
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Table VI: (continued) 

-3.1 0.0 CEM 
[0.0 0.0] MD/MC-CEM 
-2.99 -0.01 EAM [14] 
0±1.5 LEED[70] 

-7.3 +0.5 CEM 
-4.4 +1.0 MD/MC-CEM 
•6.87 +2.19 EAM [14] 
-5.7±1.5 +2.2+2.0 LEED [71] 

-7±2 +1±2 LEED [72] 
-7.8±2.5 +4.3±2.5 HEIS [73] 
-9.5+2 +6.0±2.5 RBS [74] 

^ The LMTO embedding function was used. 
^ Results of different R-factor analysis on the same set of LEED data. 
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Table VU Relaxed surface energies, a (J/m^), calculated using the semi-
empirical embedding functions. 

face A1 Ni Cu Rh Pd Ag Method 

111 [1.12] 1.95 1.41 2.39 1.65 0.94 CEM 
0.87 [2.37] [1.63] 2.76 [1.91] [1.08] MD/MC-CEM 

100 [1.19] 2.07 1.49 2.55 1.75 1.00 CEM 
0.95 [2.48] [1.73] [2.92] [2.03] [1.15] MD/MC-CEM 

331 1.27 2.21 1.59 CEM 
1.02 2.69 1.87 - - - MD/MC-CEM 

110 1.28 2.23 1.60 2.73 1.88 1.07 CEM 
1.05 [2.70] [1.88] 3.15 2.20 1.25 MD/MC-CEM 

311 1.28 2.24 1.61 CEM 
1.04 2.71 1.88 - - - MD/MC-CEM 

210 1.33 2.31 1.66 CEM 
1.10 2.81 1.96 - - - MD/MC-CEM 

1.09 2.36 1.93 2.83 2.04 1.30 Expt.® 
0.94 1.77 1.58 2.12 1.38 1.05 Expt.*) 
1.14 2.38 1.79 2.66 2.00 1.25 Expt.® 

1.15 2.49 2.04 2.94 2.17 1.38 Expt."^ 

^ Experimental data on polycrystalline samples at 298K from Ref. 28. 

^ Experimental data on polycrystalline samples at the metal's melting point from 
Ref. 28. 

° Experimental data on polycrystalline samples at the metal's melting point from 
Ref. 29. 

^ Experimental data extrapolated linearly to OK using 298K data from Ref. 28 and 
melting point data from Ref 28. 
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Table Vlll: Percentage change in the interlayer spacing calculated using two 
different types of embedding functions. 

LMTO Semi-empirical 

CEM MD/MC-CEM CEM MD/MC-CEM 

Adi2(%) Ad23(%) Adi2(%) Ad23(%) Adi2(%) Ad23(%) Ad^gC^) Ad2g(%) 

Al(lll) -2.4 0.0 -1.8 0.0 [0.0 0.0] -1.0 +0.5 
(100) -3.2 0.0 -2.3 0.0 [0.0 0.0] -1.8 +0.5 
(331) -14.5 -2.4 -9.7 -1.9 -9.6 +1.7 -11.9 +1.0 
(110) -10.0 +1.4 -6.7 +0.5 -4.4 +1.0 -6.9 +1.4 
(311) -13.8 +2.4 -9.1 +1.2 -7.8 +3.3 -10.4 +3.1 
(210) -19.7 -1.0 -13.8 -1.0 -13.8 +3.2 -18.9 +2.8 

Ni(lll) -4.1 +0.5 -1.2 0.0 -2.6 0.0 [0.0 0.0] 
(100) -5.2 +0.5 [-1.0 0.0] -3.2 0.0 [+1.2 0.0] 
(331) -16.6 -0.5 -7.9 -0.5 -13.6 -2.0 -6.4 +2.9 
(110) -12.3 0.0 -4.1 +0.5 -7.9 0.0 [-1.3 +0.5] 
(311) -15.5 +0.5 -6.9 +1.8 -11.4 +1.1 -4.3 +3.1 
(210) -19.9 -4.9 -10.0 -0.5 -16.3 -2.0 -9.2 +4.1 

Cu(lll) -4.6 +0.5 -1.9 0.0 -2.3 +0.5 [0.0 0.0] 
(100) -6.2 +0.5 -2.6 -0.5 -2.6 0.0 [+1.0 0.0] 
(331) -18.9 -5.7 -11.9 -1.4 -12.3 -1.6 -5.7 +2.2 
(110) -15.0 +1.4 -7.8 +1.1 -7.1 0.0 [-1.4 +0.5] 
(311) -18.6 +1.1 -11.0 +2.0 -10.0 +1.0 -4.1 +2.6 
(210) -25.3 -4.7 -17.5 0.0 -14.9 -1.4 -8.6 +3.2 

Rh(lll) -2.3 0.0 [-1.0 0.01 -2.4 +0.5 -1.0 0.0 
(100) -3.2 0.0 [0.0 0.0] -2.9 +0.5 [-0.5 0.0] 
(110) -7.8 +0.5 -4.2 +0.5 -7.9 +0.5 -3.8 0.0 

Pd(lll) -2.2 0.0 [-0.5 0.0] -2.2 +0.5 [-0.5 0.0] 
(100) -2.8 0.0 [0.0 0.0] -2.8 +0.5 [0.0 0.0] 
(110) -7.6 -0.5 -3.6 +0.5 -7.1 +0.5 -3.6 +0.5 

Ag(lll) [-1.2 +0.5] [0.0 0.0] -2.1 +0.5 [-0.5 0.0] 
(100) -3.1 0.0 [0.0 0.0] -2.8 +0.5 [0.0 0.0] 
(110) -7.3 +0.5 -4.4 +1.0 -6.8 0.0 -2.7 0.0 
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Table IX: Parameters determined for the expansion in Eq. (9) for various metals. 

Value A1 Ni Cu Rh 

a (Â-3) 9.0E-3 1.9E-2 l.lE-2 l.lE-2 

Co (eV) 0.11432518E+1 0.14134208E+1 0.14571759E+1 0.24165984E+1 

ci (eV) -0.15184879E+1 -0.15744062E+1 -0.17636163E+1 -0.15545836E+1 

Cg (eV) 0.57960347E+0 0.11938613E+1 0.32681219E+0 0.19881543E+1 

cg (eV) -0.25339627E-1 -0.91979019E-1 0.20598476E+0 0.48745918E+0 

C4 (eV) 0,10046380E+0 0.11005449E+0 0.98421562E-1 0.23260850E+0 

Cg (eV) -0.22854350E-1 -0.56276294E-1 -0.49960518E-1 0.94609578E-3 

Cg (eV) - - - 0.46461025E-1 

C7 (eV) - - - -

Cg (eV) - - - -

Smin (Â) 1.42445 1.23805 1.26970 1.33652 

So (A) 1.58273 1.37560 1.41077 1.48503 Is 

-3.39 -4.44 -3.49 -5.75 
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Pd Ag Pt âu 

l.OE-2 1.5E-2 1.5E-2 1.6E-2 

0.16681805E+1 0.85217445E+0 0.21618827E+1 0.12484934E+1 

-0.10439296E+1 -0.52081826E+0 -0.71005576E+0 -0.12006080E+1 

0.12793565E+1 0.91189961E+0 0.22439594E+1 0.11234482E+1 

0.42785362E+0 -0.10233345E+0 -0.54158656E-1 -0.26519356E-1 

0.22365501E+0 0.18965911E+0 0.25941877E+0 0.99011854E-1 

-0.24143541E-1 -0.19843950E+0 -0.10786330E+0 -0,51440556E-1 

0.78589146E-1 0.74632403E-1 0.17819474E+0 0.96887166E-2 

- -0.10003594E+0 -0.42240214E-2 -0.50792790E-1 

- - 0.12024458E+0 -

1.36817 1.43852 1.37873 1.43500 

1.52019 1.59836 1.53192 1.59445 

-3.89 -2.95 -5.84 -3.81 
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Embedding Functions forCu (a)  

CEM LMTO function 
CEM covalent function 
surfactdensltlaa 
bulkdansHy 

*0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 

Jellium Density (o.u.) 

Embedding Functions for Cu 
The Surfoce Region 

o CEM LMTO function 
* CEM covalent function 
• surface densities 

i.50:-:— ' ' ^ 
0.00550 0.00570 0.00590 0.00610 0.00830 0.00650 

Jellium Density (o.u.) 

Fig. 1: A comparison of the CEM LMTO and covalent embedding functions 
for Cu a) over a large range of jellium densities and b) over the 
surface region only. 
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Embedding Functions for Pd 

CEM LMTO function 
CEM covalent function 
surface denaftles 
bulkdoflsî  

0.000 0.005 0.010 0.015 

Jellium Density (a.u.) 

0.020 

(a) 

Embedding Functions for Pd 
The Surface Region 

(b) 

o CEM LMTO function 
* CEM covalent function 
V surface densities 

0.00480 0.00510 0.00530 0.00550 0.00570 0.00590 

Jellium Density (a.u.) 

Fig. 2: A comparison of the CEM LMTO and covalent embedding 
functions for Pd a) over a large range of jellium densities and b) 
over the surface region only. 
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LMTO Embedding Functions for Cu 

CEM embedding function 
MD/MC-CEM embedding function 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Jellium Density (a.u.) 

A comparison of the LMTO CEM an MD/MC-CEM embedding 
functions for Cu. 
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CEM energy components for Al(111) 
LMTO Embedding Function 
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CEM energy components for Al(110) 
LMTO Embedding Function 
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-12-10 -8 -6 -4 -2 0 2 4 6 8 10 

(b) 

Fig. 4; The CEM energy components for a) Al(lll) and b) Al(llO) 
utilizing the LMTO embedding energies. Energies are in J/m . 
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Fig. 5: A comparison of the CEM energy components for Ni(110) utilizing 
the a) LMTO embedding energies and b) the semi-empirical 
embedding energies. Energies are in J/m^. 
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LMTO Cohesive Energy Curve for Ni 
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Fig. 6: The LMTO cohesive energy curve for Ni. The Une is a fifth- order 
Chebyshev representations in Eq. (9) and the points are the 
LMTO calculated values. 



www.manaraa.com

123 
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ABSTRACT 

We present the results of our work to estimate the many-body kinetic-

exchange-correlation energy with a two-body approximation. The approximation does 

not use any adjustable parameters or any functional form. Results of this 

approximation used within the corrected effective medium method in place of exact 

numerical integration are provided for Ni, Cu, Rh, Pd and kg. Systems that are 

studied include diatomics, surfaces and the bulk lattice. Among the quantities 

calculated are surface energies, energies of formation for various bimetallic solids 

and the barriers and predicted mechanism of the diffusion of Cu on Cu(lOO). Finally, 

we discuss the validity of approximating a many-body energy with a two-body 

function. 
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INTRODUCTION 

The energy for a system of atoms, {Aj,i=l,,..,N}, has two central components: 

the Coulomb, Vg, and kinetic-exchange-correlation, GKfAj}), energies. The former is 

easy to understand since it is of classical electrostatic origin, and inexpensive to 

calculate since it involves pairwise (analytic) integrals. The latter is more complex 

and rather expensive to calculate since it requires the evaluation of a three 

dimensional numerical integral in which the integrand is dominated by the large 

densities near the nuclei^. While SCF density functional theories can do little but 

evaluate G({Aj}), approximate density functional methods commonly approximate this 

term. 

One approximate density functional theory, the corrected effective medium 

(CEM) method^"®, models the interaction of any one atom with all the other atoms in 

the system by that atom interacting with jellium. This is repeated for all the atoms 

in the system, and the total of all these atom-jellium interactions forms the zeroth 

order representation. The exphcit corrections to this model are found by considering 

the inhomogeneous electron density of the real atoms in the system. The differences 

between the real and atom-in-jellium systems are determined non-self-consistently 

and involve Coulombic energies in addition to kinetic-exchange-correlation energies. 

Of interest is the difference in the kinetic-exchange-correlation energy 

between the real system and the many atom-jelUum systems, AG. The simplest CÉM 

method (for use in molecular dynamics (MD) and Monte Carlo (MC) calculations, 

with acronym MD/MC-CEM) treats this correction energy as a function of the jellium 
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density®. Other uncorrected and empirical effective medium type theories, such as 

the very successful embedded atom method® and the related "glue"^® and Finnis-

Sinclair^^ models, approximate this kinetic-exchange-correlation energy difference as 

a set of two-body functions. 

The purpose of the present paper is to critically examine the validity of these 

approximations by comparing them to the exact numerical evaluation of AG. This is 

a more rigorous approach than fitting a function to experimental data and assuming 

the method is universally appUcable. The two simpUfications we discuss each make 

the computational effort in the sophisticated many-body theories nearly equivalent to 

that of simple two-body techniques, such as the Lennard-Jones method. By contrast, 

direct evaluation of AG requires from 10^-10'^ more effort. 

We present our work to unambiguously determine a two-body representation 

of AG. The resulting function has no adjustable parameters. We test the validity of 

the approximation by using it within the GEM theory to calculate many different 

quantities, including surface energies, surface relaxation, energies of formation for 

various bimetallic alloys and the diffusion of Cu on Gu(100). When the two-body 

approximation is used within the GEM theory we label the method GEM-Pair. No 

comparisons are made to experiment since from the standpoint of the approximation 

of the kinetic-exchange-correlation energy term, the only comparisons of interest are 

those between GEM-Pair, MD/MC-CEM and GEM. References to the exact values 

will in all cases mean those values calculated with the GEM theory using converged 

numerical integration of AG. 

The rest of this paper is organized as follows. Section II details how the two-
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body approximation of the many-body kinetic-exchange-correlation energy difference 

is derived. Section III A examines differences between AG calculated with the two 

approximate methods and the converged numerical values. Section III B describes 

the interaction energy results. Finally, section IV presents some conclusions. 
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THEORY 

The explicit form of the kinetic-exchaage-correlation energy function is 

G = pCn'CO) + T(ii-(ï)) + €„(n^(r)^-(ï))] df (D 

where x is the kinetic energy functional and is the exchange-correlation energy 

functional. An accurate Fade approximate representation of the full gradient 

expansion^^ is used for the kinetic energy functional. The local Dirac functional^® is 

used for the exchange energy. The Gunnarrson-Limdqvist functional^"^ is used for 

the correlation energy. 

The quantity of interest is the difference in the kinetic-exchange-correlation 

energy between the many-atom system and the many atom-in-jellium systems, AG: 

AG = GCJ^A,) - %]G(A,) - 2][G(\+n,)-G(Ai)-G(iii)] (2) 
i i i 

where is the jellium density. The first two terms on the right hand side (RHS) of 

the equation represent the difference between the system of interacting atoms and 

the individual atoms in the system. The third term on the RHS of the equation is 

the difference between the many atom-jellium systems and the many atom and many 

j ellium systems. 

If the system electron density, n({A|}), is significantly distorted from that of 

the sum of the individual atoms, Zn(Aj), the approximation of AG by a sum of 

pairwise terms must break down. Since the current many-body theories all utilize 

the approximation of summed atomic densities, we shall also retain this assumption. 
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This provides a best case scenario for the approximation, since then 

G{n({Ai}))=G(Sn(Ai)). 

The results in this paper are not sensitive to the use of local vs. non-local 

functionals in Eq. (1). However, the results do depend strongly on the choice of 

jellium density, n^, used in Eq. (2). This is determined® by setting I AGI =0 and 

solving for n^. This is not possible to do analytically since AG is a complicated 

functional of n^. The solution was found® by approximating the integrand ra Eq. (1) 

with a quadratic in n"*" and n", which are the atomic spin densities. Then setting 

I AG I = 0 leads to solutions which are independent of the coefficients of the fit. The 

most symmetric solution was chosen, which can be written as foUows for spin-

unpolarized atoms; 

= fnC  ̂ - Ri)n(? - Rj) (3) 

Note that the original functionals are used to calculate AG; the quadratic 

approximation to the integrand in Eq. (1) is only used to find the jellium density n^. 

If the quadratic approximation were used as the integrand in Eq. (1) then Eq.(2) 

would be equal to zero. 

It is the evaluation of AG that is time consuming, and it is therefore this 

quantity that must be approximated to speed up CEM. Less computationally 

expensive techniques are necessary to simulate larger systems with molecular 

dynamics or Monte Carlo methods. Examples of systems of current interest are 

epitaxial growth on surfaces (about 5,000 atoms) and the study of bimetallic mining 
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in clusters with over 1,000 atoms. To accommodate this need for a faster technique, 

the very simple theory, with acronym MD/MC-CEM, was developed® by assuming 

that AG is a function of the jellium density: 

^^MiyMC-CEM " (4) 

To determine ^(n^) directly, consider a bulk system with one atom per unit cell. 

Then, every atom is equivalent and ^(nj) is found from the following expression: 

WS(i) indicates that thé evaluation of the 3D integral used to calculate the kinetic-

exchange-correlation energy of the many-atom system extends only over the Wigner-

Seitz cell of atom "i". This estimate is much faster than the exact numerical 

integration of AG. However, as we shall show in detail, it is a poor approximation of 

AG at surfaces and, more importantly, in mixed metal systems. Thus there was 

incentive to derive a more flexible method of estimating AG that would be free of 

these shortcomings. 

The approach we have taken is to approximate AG as follows: 

= |E&(Ri|) (6) 
^ y 

where ggCRy) is a two-body function and Ry is the interatomic distance between 

atoms A| and A^. We derive g2(R) from the bulk system in an approach similar to 

that used earlier to find ^(nj); 
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AOww ' (7) 

The value of AGyyg^j) for any one lattice constant is thus approximated by a 

summation over the two-body functions from atoms in the first, second, third, etc. 

nearest neighbor shells. Changing the lattice constant provides all the needed 

information via the following procedure. 

Denote the set of values of AG^g^j) at the lattice constants, {a„, (%=1,...,N;^J by 

The number of first, second, third,..., nearest neighbors is independent of the 

lattice constant with each integer denoted by {Mp, p=l,...}. All values of the 

intemuclear separation are simply proportional to a„ and for any neighbor can be 

written as R^(a(^)=aggCp where we have used the fact that j=j(p). The approximation 

then becomes 

= Eg2(a«Cp)Mp (8) 
P 

where the summation is over the number of neighbor shells. 

Based upon Eq.(8), the following iterative technique is used to ascertain the 

two-body function 

Mj 2p,i 

where the superscript "(k)" identifies the iteration and where g2^®-0. This scheme 

simply determines the function in the first neighbor shell from knowledge of and 

then uses this for the other shells at the next iteration. Convergence is attained 
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when the function does not change between two consecutive iterations. 

The iterate, g2®, is fit to a quasi-Hermite spline as a function of inverse 

interatomic distance squared, R'^. This enables evaluation of this function in the 

equation for the (k+1)^^ iterate as weU as in any other calculation since the distances 

are not the same for the {a„Cj^} and {a„Cp, P=2,...}. 

The value of gg for Ni is shown in Fig. 1 as a function of the iteration number. 

The convergence is fast and uniform, which confirms the utility and generality of the 

direct numerical determination of the two-body functions. In order to determine the 

two-body function for a metal using Eq. (9), a range of bulk lattice constants must be 

chosen as well as the step size between lattice constants. For each of the systems 

studied, a step size of 0.05 bohr was used. Larger step sizes led to oscillations 

between points due to the fitting of the quasi-Hermite spUne; smaller step sizes did 

not improve the fit of the approximation to AG. 

The physical limit for AG is zero as the lattice constant increases and the 

interatomic interactions decrease. However, at very expanded lattice constants the 

kinetic energy functional used in Eq. (1) becomes the Weizacker form® because the 

value of Vn/n^^ becomes large. This functional overestimates the kinetic energies, 

which makes AG negative. Thus, the endpoint at large lattice constant (small R"^) is 

chosen so that AG remains positive; beyond this endpoint the two-body function is set 

equal to zero. The small lattice endpoint (large R"^) is chosen to include all 

physically relevant regions. A linear extrapolation (in R'^) is used past the endpoint. 

The two-body function between unlike atoms in a mixed metal (alloy) system 

is determined in a similar fashion. First, AG is calculated for the basis set of atoms 
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in a bulk unit cell as a function of the bulk lattice constant. Then the interactions 

between like atoms are evaluated using the appropriate, previously constructed two-

body functions and subtracted from the total AG. This yields the contributions to AG 

from pairs of unlike atoms only as a fimction of interatomic distance. From this 

point on the two-body function is determined as described above for the homogeneous 

atom system. In Fig. 2, we show the Ni-Ag and Ag-Ag two-body functions in addition 

to reproducing the Ni-Ni function from Fig. 1. 
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RESULTS AND DISCUSSION 

Kinetic-Exchange-Correlation Energies 

We illustrate the quantitative agreement of the two-body approximation with 

the exact AG by showing the difference between AG and AGp^^j. for Ni in Fig.3a. The 

differences are the numerical inaccuracies associated with CEM-Pair and are 

negligible compared to AG (see Fig. 3b). These figures and each of the remaining 

figures in this paper are plotted over the physically relevant region of O.TSaQ-l.lOag, 

where ag is the equilibrium bulk lattice constant. 

Next, we compare AG, AG2^p/^Q_cgM ^^pair for an atom in each layer of 

a 2-dimensionally periodic surface for various bulk-terminated, low-index surfaces. 

This is a good test of the two-body approximation because the functions were derived 

from the bulk environment in which the coordination of the focus atom is always 12, 

but in which the distance between atoms changes. Changing the number of nearest 

neighbors at fixed distance is not equivalent. 

Table I shows AG, AGjjj)/î 0.cem and AGp^jj. per atom in each layer of the 

surface until the bulk value is reached for bulk-terminated, low-index Ni surfaces. 

Non-relaxed systems were chosen so that the differences in the numbers would be 

due to true differences in the method and not different relaxed geometries. Ni is 

shown as the example, but the behavior and conclusions hold for every system we 

have studied. 

The table shows that AGp^jj. is always smaller than or equal to AG, while 

^^MD/MC-CEM always larger than or equal to AG. The difference between AG 
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and AG for an atom in the first layer of each of the (111), (100) and (110) surfaces is 

0.08, 0.11 and 0.11 eV respectively. Equivalent differences in the atoms in the 

second layers are 0.01, 0.02 and 0.06 eV respectively. The large jump in error seen 

for the second layer atom in the (110) surface is due to the fact that this atom is 

missing one first nearest neighbor while the second layer atoms in the other surfaces 

are not missing any nearest neighbors. By the third layer for the most close-packed 

surfaces, and the fourth layer for the (110) surface, the atoms are in a sufficiently 

bulk-like environment that AGp^jj. and AG are identical. 

It is important to note that since AGpgjj. is derived firom the bulk environment, 

it agrees with AG in the bulk by definition. These results show that missing nearest 

neighbors, even if it is only one, causes the greatest differences between AGp^j^ and 

AG. The reason for this is that in the bulk an atom has many positive long-range 

interactions, as shown in Fig. 1. At the surface, the atom is missing many long-

range interactions. When the two-body function values are summed, the result is too 

small. 

^^MD/MC-CEM' observed earlier, is consistently larger than AG at the 

surface, and is also exact for the bulk by definition. In fact, AG^Q/]^c_cg]|^ seems 

relatively invariant to the changing coordination of the atom; an atom in the first 

layer of the (111), (100) and (110) surfaces has differences in from the 

bulk of 0.02, 0.03 and 0.07 eV respectively., (Comparable differences in AG and 

AGp^jj. are 0.16, 0.20 and 0.28 eV and 0.24, 0.31 and 0.39 eV respectively.) This 

relative insensitivity is illustrated in Fig. 4, which shows AG^g/];^Q_Qg^ versus 

jellium density. Again, Ni is the example, but the result is true for all the systems studied. 



www.manaraa.com

137 

There are also significant differences between and AG for mixed 

metal systems. Fig. 5 shows these differences for the Nig ggAgg yg, Nig gAgg g and 

Nig ygAgg 25 sUoys. At the equilibrium lattice constants of the above three alloys, the 

difference between AG and AGj^p/jjc-CEM -0-19» 0.34 and -0.34 eV respectively. 

In CEM-Pair, the mixed metal components of AG are treated separately from 

the homogeneous atom contributions which gives the method greater flexibility than 

MD/MC-CEM in treating mixed metal systems. However, a major concern in 

deriving mixed metal two-body functions is the feasibility of using the same function 

for different combinations of the two metals. One test of this is to compare the two-

body functions derived from several different combinations of Ni and Ag. Fig. 6a 

shows the difference between the Ni-Ag functions derived from the Nig 25Ago 75 and 

Nig ygAgg gg sUoy systcms, and the Ni-Ag function derived from the Nig gAgg g alloy. 

The Nig gAgg 5 derived Ni-Ag two-body flmction underestimates AG^jj^ed the 

Nig ggAgg yg alloy over most of the region of interest. The opposite is true for the 

two-body function derived from the Nig ygAgg gg alloy. 

Since the two-body function is an approximation of AG for one interaction 

between two atoms (e.g. one Ni-Ag interaction), any difference between the functions 

is magnified when they are used to calculate the total AG in a system which involves 

multiple Ni-Ag interactions. Using the two-body function derived for the Nig gAgg g 

alloy gives poor results for the Nig ggAgg yg and Nig ygAgg gg alloys, as seen in Figure 

6b. The difference in AG for these two alloys contains a reflection about zero, which 

indicates that the Ni-Ag fimction derived from the Nig gAgg g alloy is the best choice 

if we must use only one function. 
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It is important to note that the overall difference in AG is much larger for the 

heterogeneous atom systems in Fig. 6b (=0.03 eV) than for the homogeneous atom 

system in Fig. 3 (=10'^ eV). The small errors in the homogeneous atom system are 

purely numerical. In the heterogeneous atom systems, there are also physical 

differences which come into play. The cause of these in the NiAg system is the large 

size difference between the two atoms (i.e., the equilibrium lattice constant for Ag is 

1.077 bohr larger than that for Ni). Recall that the numerical calculation of AG 

involves the evaluation of a three dimensional integral dominated by the large 

densities near the nuclei. When one atom is significantly larger than another, the 

densities near the nucleus of the larger atom will dominate AG. Because AG is really 

a many-body quantity, this dominance does not vary in a two-body fashion as the 

number of large atoms in the unit cell changes, hence leading to the physical 

differences in gg with different arrangements of atoms. 

To test this idea, we looked at the NiCu alloy system where the equilibrium 

lattice constant difference is only 0.170 bohr. The differences in the two-body 

functions for three alloys of Ni and Cu are shown in Fig. 7a, and are an order of 

magnitude smaller than the differences in the Ni-Ag fimctions in Fig. 6a. We use the 

Ni-Cu function derived from the Nig gCug g alloy function to calculate the difference 

between AG and AGp^jj. for two different alloys of Ni and Cu. The results, shown in 

Fig, 7b, prove that, indeed, for this system the single function does quite well for all 

Ni-Cu combinations, with an absolute error over the entire range of 0.002 eV or less. 

To examine how the differences in AG and AGp^jj. change as a function of the 
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lattice size mismatch, we looked at the CuPd, CuRh and PdPt systems, where the 

lattice constant difference between the two metal atoms is 0.529, 0.359 and 0.057 

bohr respectively. We then examined the differences between AG and AGp^j^ for 

combinations of atoms in the bulk alloy identical to those used for the NiAg and 

NiCu systems above, using the function derived from the Ag gBg g alloy. The 

resulting curves are very similar to Fig. 6b and 7b in shape and are therefore not 

reproduced here. The maximum difference between AG and AGp^jj. is 0.065, 0.071 

and 0.013 eV for the CuPd, CuRh and PdPt systems respectively. These differences 

do not scale in any simple way with the lattice constant difference. 

Total Interaction Energy Calculations 

The total energy results used embedding energies determined from SCF-

LMTO calculations^. Table II shows the minimized energies and corresponding bond 

lengths and vibrational frequencies of diatomic molecules found using the full theory 

and the two approximate methods. Plots of AG for the Ni diatomic are shown in Fig. 

8. The AGpj^jj. curve is consistently lower than and roughly parallel to the AG curve. 

In Fig. 1, we saw that at moderate interatomic distances (small R"^) the two-body 

function, g2(R), is positive and at compressed interatomic distances (large R'^) it 

becomes negative. In the bulk lattice from which g2(R) is derived, every atom has 

many long-range interactions which add up to AGp^j^. When there is only one 

interaction, we see that AGp^jj. is too negative. 

^^D/MC-CEM consistently larger than or equal to AG, and the difference 

between the two becomes quite large at compressed bond lengths. Recall that 

MD/MC-CEM approximates AG associated with an atom in any environment by that 
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for an atom in a bulk environment of the same jellium density. However, an 

expanded bulk lattice is not an equivalent electronic environment to that of a 

diatomic molecule. Thus, has the wrong shape and diverges from the 

AG curve. The agreement for dissociation energies in Table II should be considered 

fortuitous, and due to the relatively flat binding energy predicted by the MD/MC-

CEM method. 

Of more relevance than diatomic molecules is the description of surface atoms. 

Table III shows the surface energies of the bulk-terminated, low-index surfaces of Ni, 

Cu, Rh, Pd and Ag. CEM-Pair predicts surfaces that are too stable relative to the 

exact values by between 0.24 and 0.32 J/m^. MD/MC-CEM predicts surface energies 

which are destabiUzed by between 0.12 and 0.37 J/m^. In both cases, the differences 

are roughly face independent. 

At this point, we have examined how well the approximate methods calculate 

the energy of static homogeneous atom systems where the atoms have different 

coordination numbers than the bulk. Now we examine how the trends we have 

discussed so far affect the predictive capabilities of GEM, MD/MC-CEM and CEM-

Pair. We do this by examining the differences in the predictions of surface relaxation 

of the (110) surface of Ni, Cu, Rh, Pd and Ag and mechanism for the diffusion of Cu 

on Cu(lOO). 

Table IV presents the relaxation results. The CEM-Pair results show 

excellent agreement with the exact values for the relaxation of the first interlayer 

spacing. However, CEM-Pair predicts significant, oscillatory relaxation not seen by 

GEM. The reason for this lies in the fact that, as mentioned earlier, the loss of long-
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range interactions affects AGp^j^ more than it affects AG. The end result is that 

CEM-Pair is more sensitive to long-range changes in the geometry. MD/MC-CEM, on 

the other hand, produces worse results since it is quite invariant to changes in the 

geometry (e.g. is fairly flat as a function of jellium density in Fig. 4). 

Next we consider the homodiffusion of Cu on Cu(100). There are two distinct 

mechanisms by which the diffusion can take place. In the replacement mechanism, 

the adatom replaces an atom in the first layer, and the displaced atom then moves to 

the four-fold hollow site diagonal from the adatom's original four-fold site. In the 

bridge mechanism, the diffusing atom hops from a four-fold hollow site to an adjacent 

four-fold hollow site over the intervening two-fold bridge site. 

For the replacement mechanism, the barriers to diffusion are 0.44, 0.05 and 

0.96 eV as predicted by CEM^®, CEM-Pair and MD/MC-CEM^®, respectively. For the 

bridge mechanism, the barriers to diffusion are 0.70, 0.31 and 0.68 eV respectively. 

Both GEM and CEM-Pair predict the replacement mechanism to be the preferred 

mechanism for the diffusion of Cu on Cu(lOO). The barrier to diffusion by the 

replacement mechanism is lower than the barrier to diffusion by the bridge 

mechanism by 0.26 eV for both methods. As we noted earher, CEM-Pair predicts 

surface geometries to be too stable. In this case, CEM-Pair finds each of the 

transition states to be too stable by 0.39 eV relative to the initial and final states. 

MD/MC-CEM does not show agreement with CEM and predicts the bridge 

mechanism to be the preferred mechanism by 0.28 eV for the diffusion of Cu on 

Cu(lOO). This is because AGj^jj/mc-cem increases more quickly with density than it 

should (see Fig. 9). The difference is not too large at the four-fold site or the bridge 
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site because these are relatively low-density sites. However, the replacement 

transition state is a very crowded, high density configuration. Consequently, 

'^^MD/MC-CEM too repulsive at this geometry compared to AGjjjj/jjc.cem the 

initial and final geometries. Thus, the barrier for the replacement mechanism is too 

repulsive compared to the barrier for the bridge mechanism. 

A major motivation behind this work was to describe large bimetallic systems 

accurately. We have discussed the difficulties of using the same two-body function 

for alloys with large size mismatch and examined the limits of the approximation. 

Now we use these two-body functions to study the energy of formation for alloys. 

In Table V, we present the energy of formation for bulk aUoys where the 

atoms are present in a 1:1 ratio. The energy of formation is calculated as follows: 

AE^A„B^ = (10) 

where is the cohesive energy per atom in the bulk lattice. The energies of 

formation predicted by CEM-Pair agree quite well with the exact values, as one 

would expect since the systems under consideration are exactly those from which the 

mixed two-body functions are derived. The differences seen between CEM and CEM-

Pair are purely numerical and on the order of a few meV/atom. These values 

contrast with the MD/MC-CEM energies of formation. The largest difference is for 

Nig gAgg g, where the CEM-Pair energy of formation is 9.0 kJ/mol lower than the 

MD/MC-CEM value. 

To see what effect different Ni-Ag two-body functions would have on the 

predicted energy of formation, we used the Ni-Ag two-body functions derived from 
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the Nig ggAgg yg and the Nig ygAgg gg alloys to predict the energy of formation of the 

Nig gAgg g alloy. The resulting values are 1.19 and 1.40 kJ/mol respectively, which 

differ by 0.10 and 0.11 kJ/mol from the value in Table V. These differences are 

smaller than the numerical differences seen above between the CEM and CEM-Pair 

energies of formation. 
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CONCLUSIONS 

Finding a way to approximate the exact kinetic-exchange-correlation 

correction energy within effective medium type theories is important if these methods 

are going to be able to study large systems. Here we have examined and compared 

two different methods of approximating this many-body quantity: 1/ as a function of 

the jellium density; and 2/ as a sum of two-body functions. 

As we have seen, each method has weaknesses. is too 

insensitive to changes in the electron density. AGp^jj. works best for extended 

systems when atoms are present at both short and long distances from the atom of 

interest. In addition, there are problems in deriving accurate mixed two-body 

functions when the atoms have a large size mismatch. For best results the exact, 

numerical integration of AG is still preferable, provided the system is small enough 

to make this feasible. 

However, these approximate methods also have important strengths. MD/MC-

CEM does the better job for diatomics, and does an adequate job at calculating 

surface energies. CEM-Pair does an adequate job of calculating surface energies and 

a much better job of calculating the energies of formation of bulk alloys. More 

importantly, CEM-Pair does a very good job of describing processes on metal 

surfaces, such as surface relaxation and the homodiffusion of Cu on Cu(100). We 

therefore conclude that estimating the kinetic-exchange-correlation energy with a 

two-body function is perfectly valid as long as the limitations of this approximation, 

which we have detailed here, are taken into consideration. 
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Now that we can describe the energies of formation accurately with a faster 

method, we can hope to describe larger mixed metal systems more accurately, such 

as the behavior of bimetallic clusters (e.g. segregating or alloying), molecular 

dynamic simulations of epitaxy, etc. These are topics for future work. 

One can imagine additional modifications to the CEM-Pair approach that 

would improve the accuracy of the method. One approach might be to approximate 

AG with a function that depends on both the jellium density and a two-body function 

(i.e., some kind of combination of and AGp^jj.). Another possibility 

might be to include a coordination-dependent scaling factor in AGpgjj. to bring it into 

perfect agreement with AG. In other words, scale the AGp^jj. curve in Figs. 8 and 9 

as a function of the number of nearest neighbors so that it lies exactly on the AG 

curve. 
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Table I: Values of AG (in eV) for the low-index, bulk-terminated Ni surface 
layers. 

Surface Layer AG AG(MD/MC-CEM) AG (pair) 

Ni(lll) 1 0.78 0.92 0.70 

2 0.95 0.94 0.94 

3 0.94 0.94 0.94 

Ni(lOO) 1 0.74 0.91 0.63 

2 0.96 0.94 0.94 

3 0.94 0.94 0.94 

NidlO) 1 0.66 0.87 0.55 

2 0.92 0.95 0.86 

3 0.95 0.94 0.94 

4 0.94 0.94 0.94 
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Table H: Predicted equilibrium values for selected diatomics; the binding energy 
(Dg), the bond length (Rg) and the vibrational frequency (©g). 

Method Dg (eV) Rg (bohr) ©g (cm'^) 

Nig CEM 1.66 3.57 445 

MD/MC-CEM 1.82 3.89 424 
CEM-Pair 3.64 3.27 484 

CU2 CEM 0.98 3.50 472 

MD/MC-CEM 1.16 4.25 116 

CEM-Pair 3.44 3.15 571 

Rhg CEM 2.28 4.03 310 

MD/MC-CEM 2.42 4.32 233 

CEM-Pair 3.62 3.94 306 

Pdg CEM 1.04 4.43 95 
MD/MC-CEM 1.54 5.03 136 

CEM-Pair 2.23 4.12 197 

Agg CEM 1.94 4.81 272 

MD/MC-CEM 2.43 4.93 297 

CEM-Pair 2.98 4.75 244 
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III: The surface energies (in J/m^) for some unrelaxed low-index Ni, Cu, Rh, Pd 
and Ag surfaces. The % difference between the approximate methods and 
CEM is shown in parentheses. 

Surfaces ŒM MD/MC-CEM CEM-Pair 

Ni(lll) 
2.13 2.54 

(19.2) 
1.86 

(-12.7) 

Ni(lOO) 2.30 2.70 
(17.4) 

1.97 
(-14.3) 

Ni(llO) 2.49 2.92 
(17.3) 

2.17 
(-12.9) 

Cu(lll) 1.56 1.77 
(13.5) 

1.32 
(-15.4) 

Cu(lOO) 1.72 1.93 
(12.2) 

1.44 
(-16.3) 

Cu(llO) 1.90 2.13 
(12.1) 

1.64 
(-15.9) 

Rh(lll) 2.39 2.73 
(14.2) 

2.15 
(-10.0) 

Rh(lOO) 2.55 2.88 
(12.9) 

2.31 
( -9.41) 

Rh(llO) 2.77 3.14 
(13.4) 

2.51 
( -9.39) 

Pd(lll) 1.65 1.89 
(14.5) 

1.38 
(-16.4) 

Pd(lOO) 1.76 2.00 
(13.6) 

1.50 
(-14.8) 

Pd(llO) 1.91 2.19 
(14.7) 

1.64 
(-14.1) 

Ag(lll) 0.90 1.02 
(13.3) 

0.64 
(-28.9) 

Ag(lOO) 0.96 1.10 
(14.6) 

0.71 
(-26.0) 

Ag(llO) 1.07 1.23 
(15.0) 

0.82 
(-23.4) 
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Table IV: Relaxation results for ŒM, MD/MC-CEM and CEM-Pair for the (110) non-
reconstructing fee metal surfaces. 

Method Adi2 (%) 1
 

S
 

AdM(%) 

Ni(llO) CEM -12.3 0.5 -0.3 

MD/MC-CEM -4.1 0.3 -0.5 

CEM-Pair -14.7 3.8 -1.7 

Cu(llO) CEM -15.0 1.4 -0.1 

MD/MC-CEM 
O

O
 

1.1 -0.8 

CEM-Pair -19.0 3.4 -1.2 

Rh(llO) CEM -7.4 -0.2 -0.3 

MD/MC-CEM -4.3 0.6 -0.5 

CEM-Pair -12.2 2.9 0.0 

Pd(llO) CEM -7.8 0.1 -0.8 

MD/MC-CEM -3.7 0.6 -0.5 

CEM-Pair -8.1 1.7 -1.1 

Ag(llO) CEM -7.9 -0.2 0.7 

MD/MC-CEM -4.4 1-Q 0.0 

CEM-Pair -10.1 2.2 -0.6 
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Table V: Energies of formation calculated with CEM^, CEM-Pair and MD/MC-CEM®, in that 
Older, for bulk alloys of selected combinations of Ni, Cu, Rh, Pd and Ag. 
The units are kJ/mol. 

Cu Rh Pd Ag 

Ni 2.17 . -6.46 1.63 
2.16 - -6.27 1.29 
3.06 - -1.16 10.58 

Cu - 8.13 0.18 _ 

- 8.30 -0.10 -

- 2.29 -1.80 -

^ Results from Ref. 16. 
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Fig. 1: The Ni-Ni two-body function as a function of iteration (Eq. 9). The fifth 
iteration is the last. It is clear that the convergence is very rapid. 
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Fig. 2: The Ni-Ni, Ag-Ag and Ni-Ag two-body functions. The Ni-Ag function 
shown is derived from the Nig gAgg g bulk lattice. 
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Fig. 3: a) The difference between AG and AGp^^j. for Ni over the physically 
relevant region of O.TSag - l.lOag. b) AG as a function of lattice constant 
for Ni over the same region. The bulk equilibrium lattice constant for Ni 
is indicated on both figures. 
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4: '^^MD/MC-CEM versus jellium density for Ni. The density of an atom at the 
surface of Ni(100) and in the bulk lattice is indicated by the triangles. 
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5: The difference between AG and AG^g/]^Q_Qg];^ versus lattice constant for 
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Fig. 6; a) The difference between the Ni^ ggAg^ yg and Nig ygAgg gg functions 
and the Nig gAg^ g function, b) The difference between ÂG and AGp^j, 
for the Nio.25Ago.75 and Nio.7gAgo.25 bulk alloy systems. Each AGp^jr 
calculation here uses the Ni-Ag two-body function derived from the 
Nio.gAgo.5 alloy system. 
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Fig. 8: The kinetic-exchange-correlation energy curves for Nig as a function of 
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GENERAL CONCLUSIONS 

This work covers a wide range of theoretical chemistry. In paper 1, a 

previously developed method is used to gain understanding of the different types of 

bonding that can occur in small silicon clusters. The calculations provide much 

information, such as binding energies, equilibrium geometries and the hybridization 

of silicon atoms that is of chemical interest. Paper 2 explores the limitations of a 

theoretical technique and the consequences of improving on an existing method. This 

is important to better understand the theory and the physics of the process being 

studied. Even negative results are useful in this regard. Finally, paper 3 details the 

development of a new theoretical technique. The paper discusses the motivation 

behind the work, the actual derivation and the testing of the finished method. 

This work also emphasizes the usefulness of DFT in electronic structure 

calculations. Paper 1 shows how first principles, non-local DFT calculations can 

provide chemically accurate data that show almost perfect agreement with 

experiment without any empirical corrections. Papers 2 and 3 show how accurate 

values of the kinetic-exchange-correlation correction energy are crucial to OEM's 

success at describing processes at metal surfaces. DFT thus has an important role to 

play in both first principles and semi-empirical applications. 
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